分析 (1)当a=1时,不等式为|x-2|+|x-1|≥2,由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2,即可求此不等式的解集;
(2)原不等式的解集为R等价于|a-2|≥2,即可求实数a的取值范围.
解答 解:(1)当a=1时,不等式为|x-2|+|x-1|≥2,
由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2.
∴x≥2.5或x≤0.5,
∴不等式的解集为{x|x≥2.5或x≤0.5}.
(2)∵|ax-2|+|ax-a|≥|a-2|,
∴原不等式的解集为R等价于|a-2|≥2,
∴a≥4或a≤0.
又a>0,∴a≥4.
点评 本题考查绝对值不等式的解法,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 1或2 | D. | 1或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{4}$或$\frac{3π}{4}$ | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com