精英家教网 > 高中数学 > 题目详情
17.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式xf(x)<0的解集为{x|0<x<1,或-1<x<0 }.

分析 根据函数的奇偶性和单调性,求得不等式xf(x)<0的解集.

解答 解:奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,
故f(x)在(-∞,0)上为增函数,且f(-1)=0,
则由不等式xf(x)<0,可得$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$①,或 $\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$②.
解①求得0<x<1,解②求得-1<x<0,故不等式xf(x)<0的解集为{x|0<x<1,或-1<x<0 },
故答案为:{x|0<x<1,或-1<x<0 }.

点评 本题主要考查函数的奇偶性和单调性的综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为(  )
A.$\frac{1}{32}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知在三棱锥P-ABC中,PA=PB=PC=1,AB=$\sqrt{2}$,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一球面上,则该球的表面积为(  )
A.$\frac{{\sqrt{3}π}}{2}$B.C.$\frac{{\sqrt{2}π}}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=($\frac{1}{2}$)x,那么f(-2),f(-$\frac{π}{2}$),f(3)的大小关系是(  )
A.f(-$\frac{π}{2}$)>f(-2)>f(3)B.f(-$\frac{π}{2}$)>f(3)>f(-2)C.f(3)>f(-$\frac{π}{2}$)>f(-2)D.f(3)$>f(-2)>f(-\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A($\frac{3\sqrt{2}}{2}$,$\frac{7}{4}$),B(3$\sqrt{2}$,$\frac{5}{2}$),动点P满足|PB|=2|PA|,P的轨迹为曲线C,y轴左侧的点E在直线AB上,圆心为E的圆与x轴相切,且被轴截得的弦长为$\frac{1}{2}$
(Ⅰ)求C和圆E的方程
(Ⅱ)若直线l与圆E相切,且与C恰有一个公共点,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直三棱柱ABC-A1B1C1内有一个与该棱柱各面都相切的球,若AB⊥BC,AB=6,BC=8,则该棱柱的高等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,过坐标原点O的圆M(圆心M在第Ⅰ象限)与x轴正半轴交于点A(2,0),弦OA将圆M截得两段圆弧的长度比为1:5.
(1)求圆M的标准方程;
(2)设点B是直线l:$\sqrt{3}$x+y+2$\sqrt{3}$=0上的动点,BC、BD是圆M的两条切线,C、D为切点,求四边形BCMD面积的最小值;
(3)若过点M且垂直于y轴的直线与圆M交于点E、F,点P为直线x=5上的动点,直线PE、PF与圆M的另一个交点分别为G、H(GH与EF不重合),求证:直线GH过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,值域为(0,+∞)的是(  )
A.sinx+cosxB.$y=\sqrt{1-{2^x}}$C.y=2x2+x+1D.$y={2^{-\frac{x}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,当输出i的值是5时,输入的整数n的最大值是(  )
A.45B.44C.43D.42

查看答案和解析>>

同步练习册答案