精英家教网 > 高中数学 > 题目详情
8.已知在三棱锥P-ABC中,PA=PB=PC=1,AB=$\sqrt{2}$,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一球面上,则该球的表面积为(  )
A.$\frac{{\sqrt{3}π}}{2}$B.C.$\frac{{\sqrt{2}π}}{3}$D.

分析 求出P到平面ABC的距离,AC为截面圆的直径,由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2,求出R,即可求出球的表面积.

解答 解:由题意,AC为截面圆的直径,AC=$\sqrt{3}$,
设球心到平面ABC的距离为d,球的半径为R,
∵PA=PB=1,AB=$\sqrt{2}$,∴PA⊥PB,
∵平面PAB⊥平面ABC,∴P到平面ABC的距离为$\frac{\sqrt{2}}{2}$.
由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2
∴d=0,R2=$\frac{3}{4}$,
∴球的表面积为4πR2=3π.
故选:B

点评 本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-x3+ax-$\frac{1}{4}$.
(1)若a=3时,求函数f(x)的单调区间;
(2)试讨论函数f(x)在区间x∈(-∞,1]上的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设i是虚数单位,复数(1+i)2-$\frac{4i}{1-i}$=(  )
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,设OP与x轴的正方向的夹角为α,OP'与OP的夹角为β,现将OP绕O点旋转到与OP'重合,旋转角β=$\frac{π}{6}$,则这个旋转变换对应的矩阵为$[\begin{array}{l}{\frac{\sqrt{3}}{2}}&{-\frac{1}{2}}\\{\frac{1}{2}}&{\frac{\sqrt{3}}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,三棱柱ABC-A1B1C1的侧棱长和底边各边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,则该三棱柱的侧视图的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若点P在平面区域$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$上,则u=2x-y的取值范围为[0,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列全称命题中假命题的个数为(  )
①2x+1是整数(x∈R) 
②?x∈R,x>3 
③?x∈Z,2x2+1为奇数.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式xf(x)<0的解集为{x|0<x<1,或-1<x<0 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将圆x2+y2=1上每一点的纵坐标不变,横坐标变为原来的$\frac{1}{4}$,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:4x+y+1=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案