分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用平移法进行求解即可.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由u=2x-y得y=2x-u,
平移直线y=2x-u,
由图象可知当直线y=2x-u经过点B时,直线y=2x-u的截距最小,
此时u最大.
直线y=2x-u经过点A时,直线y=2x-u的截距最大,
此时u最小.
由$\left\{\begin{array}{l}{y-2=0}\\{x+2y-5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{y-2=0}\\{x-y-2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$,即B(4,2)
即umax=2×4-2=6,umin=2×1-2=0,
即u的取值范围是[0,6],
故答案为:[0,6]
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | $\frac{25π}{3}$ | C. | 9π | D. | $\frac{28π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}π}}{2}$ | B. | 3π | C. | $\frac{{\sqrt{2}π}}{3}$ | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 10 | C. | 18 | D. | 80 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-$\frac{π}{2}$)>f(-2)>f(3) | B. | f(-$\frac{π}{2}$)>f(3)>f(-2) | C. | f(3)>f(-$\frac{π}{2}$)>f(-2) | D. | f(3)$>f(-2)>f(-\frac{π}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com