精英家教网 > 高中数学 > 题目详情
2.直三棱柱ABC-A1B1C1内有一个与该棱柱各面都相切的球,若AB⊥BC,AB=6,BC=8,则该棱柱的高等于(  )
A.1B.2C.3D.4

分析 球的大圆与△ABC内切,记圆O的半径为r,由等面积法得(AC+AB+BC)r=6×8,解得r=2.由于棱柱各面都相切于球,可得三棱柱高为r,由此能求出结果.

解答 解:球的大圆与△ABC内切,记圆O的半径为r
则由等面积法得,$\frac{1}{2}$(AC+AB+BC)r=$\frac{1}{2}$×6×8,又AB=6,BC=8,
所以AC=10,所以r=2,即三棱柱高2r=4,
故选:D

点评 本题考查了直三棱柱球的内切球,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若点P分有向线段$\overrightarrow{AB}$所成的比是-$\frac{1}{3}$,则点B分有向线段$\overrightarrow{PA}$所成的比是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若点P在平面区域$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$上,则u=2x-y的取值范围为[0,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设定义在(0,+∞)上的函数f(x)=axlnx-b(x2-1),其中a>0,b∈R..
(1)若a=1,b=0,求函数f(x)的极值;
(2)若不等式f(x)≤0在[1,+∞)上恒成立,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式xf(x)<0的解集为{x|0<x<1,或-1<x<0 }.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.两直线3x+4y-3=0与3x+4y+1=0平行,则它们之间的距离为(  )
A.4B.$\frac{4}{5}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(2,tanθ),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tan($\frac{π}{4}$+θ)等于(  )
A.2B.-3C.-1D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
组号第一组第二组第二组第四组
分组[70,80)[80,90)[90,100)[100,110)
频数642220
频率0.060.040.220.20
组号第五组第六组第七组第八组
分组[110,120)[120,130)[130,140)[140,150]
频数18a105
频率b0.150.100.05
(1)若频数的总和为c,试求a,b,c的值;
(2)估计该校本次考试的数学平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P($\sqrt{3}$,-1),Q(sin2x,cos2x),O为坐标原点,函数f(x)=$\overrightarrow{OP}•\overrightarrow{OQ}$.
(1)求函数f(x)的对称中心和单调增区间;
(2)若A为△ABC的内角,a,b,c分别为角A,B,C的对边,f(A)=2,a=5,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案