| A. | 8π | B. | $\frac{25π}{3}$ | C. | 9π | D. | $\frac{28π}{3}$ |
分析 由题意可得:正三棱柱的高是$\sqrt{3}$,底面正三角形的高也是$\sqrt{3}$.设球心为O,半径为R,△ABC的中心为G,所以△OGA是直角三角形,OG是高的一半,OG=$\frac{\sqrt{3}}{2}$,所以GA=$\frac{2\sqrt{3}}{3}$.在△OAG中由勾股定理得:R.进而得到答案.
解答 解:因为正三棱柱ABC-DEF的正视图是$\sqrt{3}$边长为的正方形,
所以正三棱柱的高是$\sqrt{3}$,底面正三角的高也是$\sqrt{3}$.
设它的外接球的球心为O,半径为R,底面△ABC的中心为G,
所以△OGA是直角三角形,OG是高的一半,OG=$\frac{\sqrt{3}}{2}$,
GA是正三角形ABC的高的$\frac{2}{3}$,所以GA=$\frac{2\sqrt{3}}{3}$.
在△OAG中由勾股定理得:R2=OG2+GA2
解得:R2=$\frac{25}{12}$.
∴球的表面积为4πR2=$\frac{25π}{3}$.
故选:B.
点评 本题考查了几何体的结构特征与及球的定义,在球的内接多面体中一般容易出现直角三角形,进而利用勾股定理解决问题即可.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{7}{24}$ | B. | $\frac{7}{24}$ | C. | -$\frac{24}{7}$ | D. | $\frac{24}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24,$24\sqrt{2}$ | B. | 32,$8\sqrt{2}$ | C. | 48,$24\sqrt{2}$ | D. | 64,$64\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组号 | 第一组 | 第二组 | 第二组 | 第四组 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 6 | 4 | 22 | 20 |
| 频率 | 0.06 | 0.04 | 0.22 | 0.20 |
| 组号 | 第五组 | 第六组 | 第七组 | 第八组 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 18 | a | 10 | 5 |
| 频率 | b | 0.15 | 0.10 | 0.05 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com