精英家教网 > 高中数学 > 题目详情
如图所示,在三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且底面是边长为2的正三角形,侧棱长为1,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:平面A1BD⊥平面C1BD:
(3)求直线AB1与平面A1BD所成的角的正弦值.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)连接PD,PD∥B1C,问题得以解决.
(2)易证BD⊥平面A1ACC1,A1D⊥平面C1DB,问题得以证明.
(3)作AM⊥A1D,M为垂足,∠APM就是直线AB1与平面A1BD所成的角,解三角形得.
解答: 解:(1)设AB1,交A1B于点P,连结PD,
∵D是AC的中点
∴PD∥B1C,
∵B1C?平面AB1D,PD?平面AB1D,
∴B1C∥平面A1BD;

(2)∵A1A⊥底面ABC,BD?平面ABC
∴BD⊥A1A,
又底面是边长为2的正三角形,D是AC的中点.
∴BD⊥AC,
∵A1A∩AC=A,
∴BD⊥平面A1ACC1
∴BD⊥A1D,
∵在矩形A1ACC1中A1A=1,AC=2
∴A1D⊥C1D,
∴A1D⊥平面C1DB,
∴平面A1BD⊥平面C1BD:
(3)作AM⊥A1D,M为垂足,
由(2)知平面A1BD⊥平面C1BD:
∵平面A1ACC1∩平面A1BD=A1D,
∴AM⊥平面A1BD,连接MP,则∠APM就是直线AB1与平面A1BD所成的角,
∵A1A=1,AD=1,
∴在RtAA1D中,AM=
2
2

∵AP=
1
2
AB1
=
5
2

∴sin∠APM=
AM
AP
=
10
5

∴直线AB1与平面A1BD所成的角的正弦值
10
5
点评:本题在直三棱柱中证明线面平行和面面垂直和线面角的问题,着重考查了直三棱柱的性质和空间平行、垂直位置关系的判定与证明等知识,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cosx-
1
x
(x∈R,x≠0),则f′(1)值为(  )
A、-1-sin1
B、1+sin1
C、-1+sin1
D、1-sin1

查看答案和解析>>

科目:高中数学 来源: 题型:

判断并证明函数f(x)=x+
4
x
在区间(0,2)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2cosx,sinx),
b
=(sin(x+
π
3
),cosx-
3
sinx),f(x)=
a
b

(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-a,g(x)=a-
1
x
(a∈R).
(Ⅰ)判断函数h(x)=f(x)-g(x)在x∈[1,4]的单调性并用定义证明;
(Ⅱ)令F(x)=|f(x)|+g(x),求F(x)在区间x∈[1,4]的最大值的表达式M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2+ax-alnx(a∈R),当a=2时,求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-1,g(x)=a|x-1|.
(1)当a=1时,解关于x的方程|f(x)|=g(x);
(2)当x∈R时,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(3)当实数a≥0时,求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱椎P-ABCD中,PD⊥平面ABCD,四边形ABCD是边长为2的菱形,∠ABC=
3
,PD=2
3
,E是PB的中点.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要用甲、乙、丙三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为
1
4
,不堵车的概率为
3
4
;汽车走公路②堵车的概率为
1
3
,不堵车的概率为
2
3
.若甲、乙两辆汽车走公路①,丙汽车由于其他 原因走公路②,且三辆车是否堵车相互之间没有影响.
(Ⅰ)求三辆汽车中恰有一辆汽车被堵的概率;
(Ⅱ)求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案