ijУҪÓüס¢ÒÒ¡¢±ûÈýÁ¾Æû³µ´ÓÐÂÐ£Çø°Ñ½ÌÖ°¹¤½Óµ½ÀÏÐ£Çø£¬ÒÑÖª´ÓÐÂÐ£Çøµ½ÀÏÐ£ÇøÓÐÁ½Ìõ¹«Â·£¬Æû³µ×ß¹«Â·¢Ù¶Â³µµÄ¸ÅÂÊΪ
1
4
£¬²»¶Â³µµÄ¸ÅÂÊΪ
3
4
£»Æû³µ×ß¹«Â·¢Ú¶Â³µµÄ¸ÅÂÊΪ
1
3
£¬²»¶Â³µµÄ¸ÅÂÊΪ
2
3
£®Èô¼×¡¢ÒÒÁ½Á¾Æû³µ×ß¹«Â·¢Ù£¬±ûÆû³µÓÉÓÚÆäËû Ô­Òò×ß¹«Â·¢Ú£¬ÇÒÈýÁ¾³µÊÇ·ñ¶Â³µÏ໥֮¼äûÓÐÓ°Ï죮
£¨¢ñ£©ÇóÈýÁ¾Æû³µÖÐÇ¡ÓÐÒ»Á¾Æû³µ±»¶ÂµÄ¸ÅÂÊ£»
£¨¢ò£©ÇóÈýÁ¾Æû³µÖб»¶Â³µÁ¾µÄ¸öÊý¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î,Ï໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʳ˷¨¹«Ê½
רÌ⣺ӦÓÃÌâ,¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨¢ñ£©ÀûÓöÀÁ¢Öظ´ÊÔÑ鹫ʽÇóÈýÁ¾Æû³µÖÐÇ¡ÓÐÒ»Á¾Æû³µ±»¶ÂµÄ¸ÅÂÊ£»
£¨¢ò£©¦Î¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öP£¨¦Î=0£©£¬P£¨¦Î=1£©£¬P£¨¦Î=2£©ºÍP£¨¦Î=3£©£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
½â´ð£º ½â£º£¨¢ñ£©¼Ç¡°ÈýÁ¾Æû³µÖÐÇ¡ÓÐÒ»Á¾Æû³µ±»¶Â¡±ÎªÊ¼þA£¬¡­£¨1·Ö£©
ÔòP(A)=
C
1
2
1
4
3
4
2
3
+(
3
4
)2
1
3
=
7
16
¡­£¨4·Ö£©
´ð£ºÈýÁ¾Æû³µÖÐÇ¡ÓÐÒ»Á¾Æû³µ±»¶ÂµÄ¸ÅÂÊΪ
7
16
£®        ¡­£¨5·Ö£©
£¨¢ò£©¦Î¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬3                          ¡­£¨6·Ö£©
P£¨¦Î=0£©=
3
4
3
4
2
3
=
3
8
£»P£¨¦Î=1£©=
7
16
£»P£¨¦Î=2£©=
1
4
1
4
2
3
+
C
1
2
1
4
3
4
1
3
=
1
6
£»P£¨¦Î=3£©=
1
4
1
4
1
3
=
1
48
 ¡­£¨10·Ö£©
¦ÎµÄ·Ö²¼ÁÐΪ£º
¦Î0123
P
3
8
7
16
1
6
1
48
 
¡­£¨11·Ö£©
ËùÒÔE¦Î=0•
3
8
+1•
7
16
+2•
1
6
+3•
1
48
=
5
6
                     ¡­£¨13·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦ÒÔ¼°Ó¦ÓÃÓÃÒâʶ£¬¿¼²é±ØÈ»Óë»òȻ˼ÏëµÈ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬²àÀâA1A¡Íµ×ÃæABC£¬ÇÒµ×ÃæÊDZ߳¤Îª2µÄÕýÈý½ÇÐΣ¬²àÀⳤΪ1£¬DÊÇACµÄÖе㣮
£¨1£©ÇóÖ¤£ºB1C¡ÎÆ½ÃæA1BD£»
£¨2£©ÇóÖ¤£ºÆ½ÃæA1BD¡ÍÆ½ÃæC1BD£º
£¨3£©ÇóÖ±ÏßAB1ÓëÆ½ÃæA1BDËù³ÉµÄ½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ABΪԲOµÄÖ±¾¶£¬µãE¡¢FÔÚÔ²ÉÏ£¬AB¡ÎEF£¬¾ØÐÎABCDËùÔÚÆ½ÃæÓëÔ²OËùÔÚÆ½Ã滥Ïà´¹Ö±£¬ÒÑÖªAB=2£¬BC=EF=1
£¨¢ñ£©ÇóÖ¤£ºBF¡ÍÆ½ÃæDAF
£¨¢ò£©ÇóÆ½ÃæADFÓëÆ½ÃæCDFEËù³ÉµÄ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx-
1
2
ax2+bx£®
£¨1£©µ±b=a-1ʱ£¬ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©µ±a=0ʱ£¬Èôº¯Êýf£¨x£©ÓÐÁ½¸ö²»Í¬µÄÁãµã£¬ÇóbµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Éèx1¡¢x2Ϊº¯Êýf£¨x£©µÄÁ½¸ö²»Í¬µÄÁãµã£®ÇóÖ¤£ºx1x2£¾e2£¨eΪ×ÔÈ»¶ÔÊýµÄµ×£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬ÇÒPA=4£¬µ×ÃæÎªÖ±½ÇÌÝÐΣ¬¡ÏCDA=¡ÏBAD=90¡ã£¬AB=2£¬CD=1£¬AD=
2
£¬M£¬N·Ö±ðÊÇPD£¬PBµÄÖе㣮
£¨1£©ÉèQΪÏß¶ÎAPÉÏÒ»µã£¬ÈôMQ¡ÎÆ½ÃæPCB£¬ÇóCQµÄ³¤£» 
£¨2£©ÇóÆ½ÃæMCNÓëµ×ÃæABCDËù³ÉÈñ¶þÃæ½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Æ½ÃæÄÚÓÐkÌõÖ±Ïß½«Æ½Ãæ·Ö³Éf£¨k£©¸öÇøÓò£¬Ôö¼ÓÒ»ÌõÖ±Ïßºó£¬Æ½Ãæ±»·Ö³ÉµÄÇøÓò×î¶à»áÔö¼Ó
 
¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=x3-3ax+b£¨a¡Ù0£©£®
£¨1£©ÈôÇúÏßy=f£¨x£©Ôڵ㣨2£¬f£¨x£©£©´¦ÓëÖ±Ïßy=8ÏàÇУ¬Çóa£¬bµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äÓ뼫ֵµã£»
£¨3£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[-3£¬3]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±Ïßx=2ÓëË«ÇúÏßC£º
x2
4
-y2=1µÄ½¥½üÏß½»ÓÚA£¬BÁ½µã£¬PΪ˫ÇúÏßCÉϵÄÒ»µã£¬ÇÒ
OP
=a
OA
+b
OB
£¨a£¬b¡ÊR+£¬OÎª×ø±êÔ­µã£©£¬Ôò
1
a
+
1
b
µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ë«ÇúÏßC£º
x2
3
-y2=1µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬Ö±Ïßl¹ýF2£¬ÇÒ½»Ë«ÇúÏßCµÄÓÒÖ§ÓÚA£¬B£¨AµãÔÚBµãÉÏ·½£©Á½µã£¬Èô
OA
+2
OB
+3
OF1
=0£¬ÔòÖ±ÏßµÄбÂÊk=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸