精英家教网 > 高中数学 > 题目详情
3.已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.

分析 根据二次函数的性质得到关于a的不等式组,解不等式组即得a的取值范围.

解答 解:∵f(x)=x2+ax+3-a≥0,x∈[-2,2]:
$\left\{\begin{array}{l}{f(-2)=7-3a≥0}\\{f(2)=7+a>0}\\{-\frac{a}{2}<-2}\end{array}\right.$,或 $\left\{\begin{array}{l}{f(-2)=7-3a>0}\\{f(2)=7+a≥0}\\{-\frac{a}{2}>2}\end{array}\right.$,或 $\left\{\begin{array}{l}{-2≤-\frac{a}{2}≤2}\\{\frac{12-4a{-a}^{2}}{4}≥0}\end{array}\right.$,解得-7≤a≤2;
∴a的取值范围为[-7,2].

点评 本题考查二次函数和一元二次不等式的关系,一元二次不等式解的情况,可结合图象求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.$\overrightarrow a=(cos40°,sin40°),\;\overrightarrow b=(sin20°,cos20°)$,则$\overrightarrow a$•$\overrightarrow b$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.有以下结论:①函数y=log2(1-x)的增区间是(-∞,1);②若幂函数y=f(x)的图象经过点(2,$\sqrt{2}$),则该函数为偶函数;③函数y=3|x|的值域是[1,+∞);④若函数y=f(x)为单调增函数,则函数$y=\frac{1}{f(x)}$为减函数.
其中正确结论的序号是③.(把所有正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点A(2,-1),B(3,1),则 $\overrightarrow{AB}$=(  )
A.(1,2)B.(1,-3)C.(-1,3)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.画出求满足12+22+32+…+i2>106的最小正整数n的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某中学高三(10)班女同学有45名,男同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出一名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名男同学的概率;
(3)实验结束后,第一次做实验的同学A与第二次做实验的同学B得到的实验数据的茎叶图如图所示,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在棱长为2的正方体ABCD-A′B′C′D′中,点E,F分别是棱BC,CD上的动点.
(1)当BE=CF时,求证:B′F⊥D′E;
(2)若点E为BC的中点,在棱CD上是否存在点F,使二面角C′-EF-C的余弦值为$\frac{1}{3}$?若存在,请确定点F的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图为某几何体的三视图,则其体积为(  )
A.$\frac{2π}{3}+4$B.$\frac{2π+4}{3}$C.$\frac{π}{3}+4$D.$π+\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的方程为ρsin2θ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案