精英家教网 > 高中数学 > 题目详情
11.已知点A(2,-1),B(3,1),则 $\overrightarrow{AB}$=(  )
A.(1,2)B.(1,-3)C.(-1,3)D.(-1,1)

分析 利用有向线段的坐标表示求得.

解答 解:已知点A(2,-1),B(3,1),则 $\overrightarrow{AB}$=(3-2,1+1)=(1,2);
故选:A.

点评 本题考查了有向线段的表示;用终点坐标减去起点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数:①f(x)在D上是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].现已知f(x)=$\sqrt{2x+1}$+k为闭函数,则k的取值范围是(  )
A.(-1,-$\frac{1}{2}$]B.(-∞,1)C.[$\frac{1}{2}$,1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四个命题中是真命题的是(  )
A.“?x∈R,x2-4x+1>0”的否定是“?x∈R,x2-4x+1<0”
B.若x≥5,y≥6,则x+y≥11的逆否命题是假命题
C.“x>1”是“$\frac{1}{x}<1$”的充要条件
D.已知α,β为两个不同的平面,m为α内的一条直线,则“α⊥β”是“m⊥β”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${(\frac{2i}{1-i})^2}$等于(  )
A.4iB.-4iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设{an}是公差不为0的等差数列,已知a1=2,且a1,a2,a4成等比数列.
(1)求{an}的通项公式;
(2)设bn=an+1,数列{bn}前n项和为Sn,求数列$\{\frac{1}{S_n}\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知下列框图,若a=5,则输出b=26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在侧棱和底面垂直的三棱柱ABC-A1B1C1中,AB=1,AC=$\sqrt{3}$,BC=2,AA1=$\sqrt{6}$,点P为CC1的中点.
(1)求证:A1C⊥平面ABP;
(2)求平面ABP与平面A1B1P所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知Sn是数列{$\frac{n}{{2}^{n-1}}$}的前n项和,若不等式|λ+1|<Sn+$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,则λ的取值范围是-3<λ<1.

查看答案和解析>>

同步练习册答案