分析 (1)设{an}是公差d不为0的等差数列,运用等比数列的中项的性质和等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;
(2)求得bn=an+1=2n+1,Sn=$\frac{1}{2}$(3+2n+1)n=n(n+2),可得$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),再由数列的求和方法:裂项相消求和,化简整理即可得到所求和.
解答 解:(1)设{an}是公差d不为0的等差数列,
a1,a2,a4成等比数列,可得:
a22=a1a4,即(a1+d)2=a1(a1+3d),
化为a1=d=2,
则{an}的通项公式为an=a1+(n-1)d=2+2(n-1)=2n;
(2)bn=an+1=2n+1,
数列{bn}前n项和为Sn=$\frac{1}{2}$(3+2n+1)n=n(n+2),
可得$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
即有数列$\{\frac{1}{S_n}\}$的前n项和为
$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{4}$-$\frac{1}{6}$+…+$\frac{1}{n-2}$-$\frac{1}{n}$+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$).
点评 本题考查等差数列的通项公式和等比数列的中项的性质,同时考查等差数列的求和公式和数列的求和方法:裂项相消求和,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,-3) | C. | (-1,3) | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com