分析 (1)设CE=DF=a,以点D为坐标原点,DA为x轴,DC为y轴,DD′为z轴,建立空间直角坐标系,利用向量法能证明B'F⊥D'E.
(2)设DF=b,求出平面EFC'的一个法向量和平面EFC的一个法向量,由向量法能求出当点F为棱CD的中点时,二面角C'-EF-C的余弦值为$\frac{1}{3}$.
解答
证明:(1)设CE=DF=a,以点D为坐标原点,DA为x轴,DC为y轴,DD′为z轴,建立空间直角坐标系,…(1分
则E(a,2,0),F(0,a,0),B'(2,2,2),D'(0,0,2),C'(0,2,2),…(3分)
∴$\overrightarrow{B'F}=(-2,a-2,-2),\overrightarrow{D'E}=(a,2,-2)$,
∵$\overrightarrow{B'F}•\overrightarrow{D'E}=(a,2,-2)×(-2,a-2,-2)$=-2a+2a-4+4=0,…(5分)
∴$\overrightarrow{B'F}⊥\overrightarrow{D'E}$,∴B'F⊥D'E.…(6分)
解:(2)设DF=b,由题意可知,E(1,2,0),F(0,b,0)(0≤b≤2),
∴$\overrightarrow{EF}=(-1,b-2,0)$,$\overrightarrow{C'F}=(0,b-2,-2)$,…(8分)
设$\overrightarrow{n}$=(x,y,z)为平面EFC'的一个法向量,
则有$\overrightarrow{EF}•\overrightarrow{n}$=0,$\overrightarrow{{C}^{'}F}•\overrightarrow{n}$=0,
即$\left\{{\begin{array}{l}{-x+(b-2)y=0}\\{(b-2)y+(-2)z=0}\end{array}}\right.$,令y=1得,$\overrightarrow{n}$=(b-2,1,$\frac{b-2}{2}$),…(10分)
而平面EFC的一个法向量为$\overrightarrow{m}$=(0,0,1),
要使二面角C'-EF-C的余弦值为$\frac{1}{3}$,
只需|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{1}{3}$,即$|\frac{{\frac{b-2}{2}}}{{\sqrt{{{(b-2)}^2}+1+{{(\frac{b-2}{2})}^2}}}}|=\frac{1}{3}$,
解得b=1,b=3(舍),…(12分)
∴当点F为棱CD的中点时,二面角C'-EF-C的余弦值为$\frac{1}{3}$.…(13分)
点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{1}{8}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4) | B. | (-4,0) | C. | (0,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份中的x | 0 | 1 | 2 | 3 | 4 |
| 人口总数y | 5 | 7 | 8 | 11 | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com