精英家教网 > 高中数学 > 题目详情
15.如图,在棱长为2的正方体ABCD-A′B′C′D′中,点E,F分别是棱BC,CD上的动点.
(1)当BE=CF时,求证:B′F⊥D′E;
(2)若点E为BC的中点,在棱CD上是否存在点F,使二面角C′-EF-C的余弦值为$\frac{1}{3}$?若存在,请确定点F的位置,若不存在,说明理由.

分析 (1)设CE=DF=a,以点D为坐标原点,DA为x轴,DC为y轴,DD′为z轴,建立空间直角坐标系,利用向量法能证明B'F⊥D'E.
(2)设DF=b,求出平面EFC'的一个法向量和平面EFC的一个法向量,由向量法能求出当点F为棱CD的中点时,二面角C'-EF-C的余弦值为$\frac{1}{3}$.

解答 证明:(1)设CE=DF=a,以点D为坐标原点,DA为x轴,DC为y轴,DD′为z轴,建立空间直角坐标系,…(1分
则E(a,2,0),F(0,a,0),B'(2,2,2),D'(0,0,2),C'(0,2,2),…(3分)
∴$\overrightarrow{B'F}=(-2,a-2,-2),\overrightarrow{D'E}=(a,2,-2)$,
∵$\overrightarrow{B'F}•\overrightarrow{D'E}=(a,2,-2)×(-2,a-2,-2)$=-2a+2a-4+4=0,…(5分)
∴$\overrightarrow{B'F}⊥\overrightarrow{D'E}$,∴B'F⊥D'E.…(6分)
解:(2)设DF=b,由题意可知,E(1,2,0),F(0,b,0)(0≤b≤2),
∴$\overrightarrow{EF}=(-1,b-2,0)$,$\overrightarrow{C'F}=(0,b-2,-2)$,…(8分)
设$\overrightarrow{n}$=(x,y,z)为平面EFC'的一个法向量,
则有$\overrightarrow{EF}•\overrightarrow{n}$=0,$\overrightarrow{{C}^{'}F}•\overrightarrow{n}$=0,
即$\left\{{\begin{array}{l}{-x+(b-2)y=0}\\{(b-2)y+(-2)z=0}\end{array}}\right.$,令y=1得,$\overrightarrow{n}$=(b-2,1,$\frac{b-2}{2}$),…(10分)
而平面EFC的一个法向量为$\overrightarrow{m}$=(0,0,1),
要使二面角C'-EF-C的余弦值为$\frac{1}{3}$,
只需|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{1}{3}$,即$|\frac{{\frac{b-2}{2}}}{{\sqrt{{{(b-2)}^2}+1+{{(\frac{b-2}{2})}^2}}}}|=\frac{1}{3}$,
解得b=1,b=3(舍),…(12分)
∴当点F为棱CD的中点时,二面角C'-EF-C的余弦值为$\frac{1}{3}$.…(13分)

点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.定义在R上的偶函数f(x)满足f(x+4)=f(x),且当x∈(-2,0),f(x)=($\frac{1}{2}$)x,则f(log28)等于(  )
A.3B.$\frac{1}{8}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设{an}是公差不为0的等差数列,已知a1=2,且a1,a2,a4成等比数列.
(1)求{an}的通项公式;
(2)设bn=an+1,数列{bn}前n项和为Sn,求数列$\{\frac{1}{S_n}\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(a)>f(8-a),则a的取值范围是(  )
A.(-∞,4)B.(-4,0)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在侧棱和底面垂直的三棱柱ABC-A1B1C1中,AB=1,AC=$\sqrt{3}$,BC=2,AA1=$\sqrt{6}$,点P为CC1的中点.
(1)求证:A1C⊥平面ABP;
(2)求平面ABP与平面A1B1P所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某城市理论预测2014年到2018年人口总数y (单位:十万)与年份(用2014+x表示)的关系如表所示:
年份中的x01234
人口总数y5781119
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程$\stackrel{∧}{y}$=bx+a;
(3)据此估计2019年该城市人口总数.
(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)
参考公式:线性回归方程为$\hat y=bx+a$,其中 $b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知半径为$\frac{2\sqrt{3}}{3}$的球内接一个圆锥,圆锥的轴截面SAB是等边三角形,O1为圆锥底面直径AB的中点,O为球心,动点P在圆锥底面内(包括圆周)运动,若AO⊥OP,则点P形成的轨迹的长度为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在一组样本数据(x1,y1),(x2,y2),…(x6,y6)的散点图中,若所有样本点(xi,yi)(i=1,2,…,6)都在曲线y=bx2-1附近波动.经计算$\sum_{i=1}^{6}$xi=11,$\sum_{i=1}^{6}$yi=13,$\sum_{i=1}^{6}$xi2=21,则实数b的值为$\frac{19}{21}$.

查看答案和解析>>

同步练习册答案