精英家教网 > 高中数学 > 题目详情
5.定义在R上的偶函数f(x)满足f(x+4)=f(x),且当x∈(-2,0),f(x)=($\frac{1}{2}$)x,则f(log28)等于(  )
A.3B.$\frac{1}{8}$C.-2D.2

分析 根据函数周期性的性质将结论进行转化求解即可.

解答 解:∵f(x+4)=f(x),
∴f(log28)=f(3)=f(3-4)=f(-1),
∵当x∈(-2,0),f(x)=($\frac{1}{2}$)x
∴f(-1)=($\frac{1}{2}$)-1=2,
故选:D.

点评 本题主要考查函数值的计算,根据函数周期性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且Sn=2an+n-4(n∈N*
(1)求{an}的通项公式;
(2)设Tn为数列{$\frac{3}{a_n}$}的前n项,证明:1≤Tn<$\frac{5}{2}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设等差数列{an}的前n项和Sn,且$\left\{\begin{array}{l}{S_4}=4{S_2}\\{a_{2n}}=2{a_n}+1\end{array}\right.$,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)若数列满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+\frac{b_3}{a_3}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}\;\;\;(n∈{N^*})$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\overrightarrow a=(cos40°,sin40°),\;\overrightarrow b=(sin20°,cos20°)$,则$\overrightarrow a$•$\overrightarrow b$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为4,且f(1)>1,f(2)=m2-2m,$f(3)=\frac{2m-5}{m+1}$,则实数m的取值集合是(  )
A.$\{m|m<\frac{2}{3}\}$B.{0,2}C.$\{m|-1<m<\frac{4}{3}\}$D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b,c均为实数,其中,a=1.70.3,b=0.93.1,c=log0.93.1,则三个数的关系依次为(  )
A.b<a<cB.b<c<aC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-ax+b(a,b∈R)的图象经过坐标原点,且f′(1)=1,数列{an}的前n项和Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.有以下结论:①函数y=log2(1-x)的增区间是(-∞,1);②若幂函数y=f(x)的图象经过点(2,$\sqrt{2}$),则该函数为偶函数;③函数y=3|x|的值域是[1,+∞);④若函数y=f(x)为单调增函数,则函数$y=\frac{1}{f(x)}$为减函数.
其中正确结论的序号是③.(把所有正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在棱长为2的正方体ABCD-A′B′C′D′中,点E,F分别是棱BC,CD上的动点.
(1)当BE=CF时,求证:B′F⊥D′E;
(2)若点E为BC的中点,在棱CD上是否存在点F,使二面角C′-EF-C的余弦值为$\frac{1}{3}$?若存在,请确定点F的位置,若不存在,说明理由.

查看答案和解析>>

同步练习册答案