精英家教网 > 高中数学 > 题目详情
1.已知Sn是数列{$\frac{n}{{2}^{n-1}}$}的前n项和,若不等式|λ+1|<Sn+$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,则λ的取值范围是-3<λ<1.

分析 利用错位相减法计算可知Sn=4-$\frac{n+2}{{2}^{n-1}}$,化简可知4-$\frac{1}{{2}^{n-2}}$≥2,从而问题转化为解不等式|λ+1|<2,计算即得结论.

解答 解:∵Sn是数列{$\frac{n}{{2}^{n-1}}$}的前n项和,
∴Sn=1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}$Sn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+…+(n-1)•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$,
两式相减,得:$\frac{1}{2}$Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$=2-$\frac{n+2}{{2}^{n}}$,
即Sn=4-$\frac{n+2}{{2}^{n-1}}$,
∴Sn+$\frac{n}{{2}^{n-1}}$=4-$\frac{n+2}{{2}^{n-1}}$+$\frac{n}{{2}^{n-1}}$=4-$\frac{1}{{2}^{n-2}}$,
∵$\frac{1}{{2}^{n-2}}$随着n的增大而减小,
∴当n=1时4-$\frac{1}{{2}^{n-2}}$取最小值4-$\frac{1}{{2}^{1-2}}$=2,
∴|λ+1|<2,解得:-3<λ<1,
故答案为:-3<λ<1.

点评 本题是一道关于数列与不等式的综合题,考查错位相减法,考查数列的单调性,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知点A(2,-1),B(3,1),则 $\overrightarrow{AB}$=(  )
A.(1,2)B.(1,-3)C.(-1,3)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图为某几何体的三视图,则其体积为(  )
A.$\frac{2π}{3}+4$B.$\frac{2π+4}{3}$C.$\frac{π}{3}+4$D.$π+\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知某几何体的三视图如图所示,则此几何体的体积是$\frac{2}{3}$;  表面积是$3+\sqrt{2}+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.P是长、宽、高分别为12,3,4的长方形外接球表面上一动点,设P到长方体各个面所在平面的距离为d,则d的取值范围是[0,$\frac{25}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在边长为1的正三角形ABC中,$\overrightarrow{BM}$=2$\overrightarrow{MC}$,N为AM的中点.
(Ⅰ) 求$\overrightarrow{AM}$•$\overrightarrow{BC}$的值;
(Ⅱ) 若$\overrightarrow{BN}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,求$\frac{n}{m}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的方程为ρsin2θ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期日
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)27313541495662
(1)在表中,画出车流量和PM2.5浓度的散点图;
(2)求y关于x的线性回归方程;
(3)(i)利用所求的回归方程,预测该市车流量为8万辆时,PM2.5的浓度;
(ii)规定当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良,为使该市某日空气质量为优活为良,则应控制当天车流量在多少万辆以内(结果以万辆为单位,保留整数)?
参考公式:回归直线的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{x}$=$\overline{y}$=$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα=$\frac{1}{2}$,α∈(0,$\frac{π}{2}$).
(1)求tanα的值;
(2)求cos(α+$\frac{π}{6}$)的值.

查看答案和解析>>

同步练习册答案