分析 (I)用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AM},\overrightarrow{BC}$,再计算数量级;
(II)用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{BN}$,根据向量的基本定理得出m,n的值.
解答 解:(I)${\overrightarrow{AB}}^{2}={\overrightarrow{AC}}^{2}=1$,$\overrightarrow{AB}•\overrightarrow{AC}$=1×1×cos60°=$\frac{1}{2}$.
$\overrightarrow{AM}$=$\overrightarrow{AB}+\overrightarrow{BM}$=$\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}$=$\overrightarrow{AB}+\frac{2}{3}(\overrightarrow{AC}-\overrightarrow{AB})$=$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$.
$\overrightarrow{BC}$=$\overrightarrow{AC}-\overrightarrow{AB}$.
∴$\overrightarrow{AM}•\overrightarrow{BC}$=($\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$)•($\overrightarrow{AC}-\overrightarrow{AB}$)=-$\frac{1}{3}{\overrightarrow{AB}}^{2}$+$\frac{2}{3}$${\overrightarrow{AC}}^{2}$-$\frac{1}{3}$$\overrightarrow{AB}•\overrightarrow{AC}$=-$\frac{1}{3}$+$\frac{2}{3}$-$\frac{1}{6}$=$\frac{1}{6}$.
(II)∵$\overrightarrow{AN}$=$\frac{1}{2}\overrightarrow{AM}$=$\frac{1}{6}\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{AC}$,
∴$\overrightarrow{BN}$=$\overrightarrow{AN}-\overrightarrow{AB}$=-$\frac{5}{6}\overrightarrow{AB}$+$\frac{1}{3}\overrightarrow{AC}$,
∴m=-$\frac{5}{6}$,n=$\frac{1}{3}$.
∴$\frac{n}{m}$=-$\frac{2}{5}$.
点评 本题考查了平面向量线性运算的几何意义,平面向量的基本定理,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 7 | 14 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 17 | x | 4 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 4 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{2\sqrt{x}}}$ | B. | -$\frac{1}{{2\sqrt{x}}}$ | C. | -$\frac{{\sqrt{x}}}{2}$ | D. | $\frac{{\sqrt{x}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com