分析 (Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入上述方程即可化为直角坐标方程.
(Ⅱ)直线l经过点P(1,1)(t=0时),把直线l的参数方程代入抛物线方程可得:t2+6$\sqrt{2}$t-6=0,利用|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.
解答 解:(Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.化为直角坐标方程:y2=4x.
(Ⅱ)直线l经过点P(1,1)(t=0时),
把直线l的参数方程$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),代入抛物线方程可得:t2+6$\sqrt{2}$t-6=0,
∴|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=4$\sqrt{6}$.
点评 本题考查了极坐标化为直角坐标方程的方法、直线与抛物线相交问题、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com