分析 由三视图画出几何体的直观图,确定几何体的线面关系和数量关系,由椎体的体积公式求出此几何体的体积;由线面垂直的判定定理和定义证明侧面均为直角三角形,由三角形的面积公式求出三棱锥的表面积.
解答
解:由三视图可知此几何体为一个三棱锥,其直观图如图:
侧棱PA⊥平面ABC,△ABC为等腰直角三角形,
且∠C=90°,PA=AB=2,
∴AC=BC=$\sqrt{2}$,
∴此几何体的体积V=$\frac{1}{3}{S}_{△ABC}•PA$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×2$=$\frac{2}{3}$;
∵PA⊥平面ABC,∴BC⊥PA,
又BC⊥AC,PA∩AC=A,
∴BC⊥平面PAC,PC?平面PAC,∴BC⊥PC,
∴△PCB为直角三角形,且PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=$\sqrt{6}$,
∴其表面积S=S△PAC+S△PAB+S△PBC+S△ABC
=$\frac{1}{2}×2×\sqrt{2}+\frac{1}{2}×2×2+\frac{1}{2}×\sqrt{2}×\sqrt{6}+\frac{1}{2}×\sqrt{2}×\sqrt{2}$
=$3+\sqrt{2}+\sqrt{3}$,
故答案为:$\frac{2}{3}$;$3+\sqrt{2}+\sqrt{3}$
点评 本题考查三视图求几何体的体积以及表面积,以及线面垂直的定义和判定定理,由三视图正确复原几何体是解题的关键,考查空间想象能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 7 | 14 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 17 | x | 4 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 4 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com