精英家教网 > 高中数学 > 题目详情
15.已知函数y=f(x)在定义域$({-\frac{3}{2},3})$上可导,其图象如图,记y=f(x)的导函数y=f′(x),则不等式xf′(x)≤0的解集是[0,1]∪(-$\frac{3}{2}$,-$\frac{1}{2}$].

分析 由图象得到函数的单调区间,得到函数在个区间上导函数的符号,求出不等式的解.

解答 解:由f(x)的图象知x∈(-$\frac{3}{2}$,-$\frac{1}{2}$)时,递增,f′(x)>0;xf′(x)≤0?x≤0,
∴x∈(-$\frac{3}{2}$,-$\frac{1}{2}$)
x∈(-$\frac{1}{2}$,1)时,f(x)递减,f′(x)<0,∴xf′(x)≤0?x≥0,∴x∈[0,1]
x∈(1,3)时,f(x)递增,f′(x)>0,∴xf′(x)≤0?x≤0无解
故答案为:[0,1]∪(-$\frac{3}{2}$,-$\frac{1}{2}$].

点评 本题考查函数的单调性与导函数符号的关系:f′(x)>0则f(x)递增;f′(x)>0则f(x)递减.考查数形结合的数学数学方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f[lg(x+1)]的定义域是[0,9],求函数f(2x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a为实数,0<a<1,函数f(x)在0≤x≤y≤1时,有f(0)=0,f(1)=1,f($\frac{x+y}{2}$)=(1-a)f(x)+af(y)
(1)求a的值;
(2)求f($\frac{1}{7}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.假设洗小水壶需一分钟,烧开水需15分钟,洗茶杯需3分钟,取放茶叶需2分钟,泡茶需1分钟则上述“喝茶问题”中至少需多少分钟才可以喝上茶?(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{3}sin2x-2{sin^2}$x+2,x∈R
(1)函数f(x)可有函数y=sinx做怎样的变换而得到;
(2)在给定的坐标系中,画出函数y=f(x)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=2x的图象经过图象变换得到函数y=4x-3+1的图象,求该坐标变换.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.现有如下投资方案,一年后投资盈亏的情况如下:
(1)投资股市:
投资结果获利40%不赔不赚亏损20%
概  率$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
(2)购买基金:
投资结果获利20%不赔不赚亏损10%
概  率p$\frac{1}{3}$q
(Ⅰ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于$\frac{4}{5}$,求p的取值范围;
(Ⅱ)丙要将家中闲置的20万元钱进行投资,决定在“投资股市”、“购买基金”,或“等额同时投资股市和购买基金”这三种方案中选择一种,已知$p=\frac{1}{2}$,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?(其中第三方案须考察两项获利之和的随机变量Z),给出结果并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数a>0,关于x、y的不等式组$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤a}\\{y+a≥0}\end{array}\right.$表示的平面区域为D,若在平面区域D内存在点P(x0,y0),满足3x0-4y0=5,则a的最小值为$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为2:1的两段弧,那么该椭圆的离心率等于(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{4}{9}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案