精英家教网 > 高中数学 > 题目详情
20.函数y=2x的图象经过图象变换得到函数y=4x-3+1的图象,求该坐标变换.

分析 先化简函数y=4x-3+1=22x-6+1,由函数y=2x的图象向右平移6个单位,然后横坐标缩短为原来的$\frac{1}{2}$,再向上平移1个单位,得到函数y=22x-6+1的图象.

解答 解:因为y=4x-3+1=22x-6+1,所以只需把y=2x的图象经过下列变换可以得到y=4x-3+1的图象,
(1)先把y=2x的图象向右平移6个单位,得到函数y=2x-6的图象;
(2)再把横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变得到函数y=22x-6的图象;
(3)再把所得函数图象向上平移1个单位即得函数y=4x-3+1的图象.

点评 本题考查直角坐标的变换方法:主要有平移变换和伸缩变换,平移变换改变图象的位置,伸缩变换改变图象的形状或大小,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x2+2ax+2
(1)当a=-1时,求函数的最小值;
(2)求a的取值范围,使得函数在区间[5,+∞]上为单调增函数;
(3)试求函数在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知m>0,则m+$\frac{16}{m}$取最小值时,当且仅当m=(  )
A.8B.±4C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$sinωx-2sin2$\frac{ωx}{2}$(ω>0)的最小正周期为3π.
(I)求函数f(x)在区间[-π,$\frac{3π}{4}$]上的最大值和最小值;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,且a<b<c,$\sqrt{3}$a=2csinA,求角C的大小;
(Ⅲ)在(II)的条件下,若f($\frac{3}{2}$A+$\frac{π}{2}$)=$\frac{11}{13}$,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x)在定义域$({-\frac{3}{2},3})$上可导,其图象如图,记y=f(x)的导函数y=f′(x),则不等式xf′(x)≤0的解集是[0,1]∪(-$\frac{3}{2}$,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中xOy,已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$(1,\frac{{\sqrt{3}}}{2})$,且椭圆E的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆E的方程;
(2)是否存在以A(0,-b)为直角顶点且内接于椭圆E的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知i为虚数单位,若x+1+(x2-4)i>0(x∈R),则x的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设扇形的半径长为2cm,面积为4cm2,则扇形的圆心角的弧度数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点为F,以F为圆心的圆与双曲线的两条渐近线分别相切于 A、B两点,且|AB|=$\sqrt{3}$b,则该双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{4}$C.$2\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案