精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的前n项和为Sn,当数列{an}的通项公式为an=$\frac{1}{n+1}$,n∈N*,我们记实数λ为S2n-Sn的最小值,那么数列bn=$\frac{1}{n-100λ}$,n∈N*取得最大值时的项数n为34.

分析 an=$\frac{1}{n+1}$,n∈N*,S2n-Sn=an+1+an+2+…+a2n=$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n+1}$=f(n),研究其单调性可得:f(n)单调递增,n=1时,S2n-Sn取得最小值f(1)=$\frac{1}{3}$=λ,于是bn=$\frac{1}{n-100λ}$=$\frac{1}{n-\frac{100}{3}}$,对n分类讨论,利用单调性即可得出.

解答 解:∵an=$\frac{1}{n+1}$,n∈N*,
∴S2n-Sn=an+1+an+2+…+a2n=$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n+1}$=f(n),
f(n+1)-f(n)=$\frac{1}{2n+2}+\frac{1}{2n+3}$-$\frac{1}{n+2}$=$\frac{1}{2n+2}+\frac{1}{2n+3}$-$\frac{1}{2n+4}$-$\frac{1}{2n+4}$>0,
因此f(n)单调递增,∴n=1时,S2n-Sn取得最小值f(1)=$\frac{1}{3}$=λ,
∴bn=$\frac{1}{n-100λ}$=$\frac{1}{n-\frac{100}{3}}$,
n≤33时,bn<0;
n≥34时,bn>0,并且单调递减.
因此取得最大值时的项数n=34.
故答案为:34.

点评 本题考查了数列的递推关系、数列的单调性,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,多面ABCDEF中,DE⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,四边形BDEF是正方形.
(1)求证:AE∥平面BCF;
(2)求直线AF与平面ABD所成角的正弦值;
(3)在线段EC上是否存在点P,使得AP⊥平面CEF,若存在,求出$\frac{PC}{EP}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,其中主视图和左视图都是边长为2的正方形,俯视图中的曲线是半径为2的$\frac{1}{4}$圆弧,则该几何体的体积为(  )
A.6-πB.8-πC.6-2πD.8-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若不等式$\frac{{x}^{2}-8x+20}{m{x}^{2}-mx-1}$<0对一切x∈R都成立,则实数m的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等差数列{an}是有穷数列,且a1∈R,公差d=2,记{an}的所有项之和为S,若a12+S≤96,则数列{an}至多有12项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足:2|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|2$\overrightarrow{a}$-$\overrightarrow{b}$|≠0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知两条直线m,n,两个平面α,β,给出下面四个命题:
①m∥n,m∥α⇒n∥α
②α∥β,m∥n,m⊥α⇒n⊥β
③m∥n,m⊥α⇒n⊥α
④α⊥β,m∥α⇒m⊥β
其中正确命题的序号是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2x+cos2x+1.
(Ⅰ)求f(x)的递减区间;
(Ⅱ)当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,求f(x)的最值,并指出取得最值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知条件p:x2-3x-4≤0,条件q:|x-3|≤m,若¬q是¬p的充分不必要条件,则实数m的取值范围是[4,+∞).

查看答案和解析>>

同步练习册答案