精英家教网 > 高中数学 > 题目详情
3.已知等差数列{an}是有穷数列,且a1∈R,公差d=2,记{an}的所有项之和为S,若a12+S≤96,则数列{an}至多有12项.

分析 根据题意,利用等差数列的前n项和公式,结合一元二次不等式的解法与步骤,利用判别式列出不等式,求出解集即可.

解答 解:等差数列{an}是有穷数列,且a1∈R,公差d=2,记{an}的所有项之和为S,
∴Sn=na1+$\frac{1}{2}$n(n-1)d=na1+n(n-1);
又a12+S≤96,
∴${{a}_{1}}^{2}$+na1+n(n-1)≤96,
即${{a}_{1}}^{2}$+na1+(n2-n-96)≤0;
∴△=n2-4(n2-n-96)≥0,
即3n2-4n-384≤0,
解得-$\frac{32}{3}$≤n≤12;
∴数列{an}至多有12项.
故答案为:12.

点评 本题考查了一元二次不等式的应用问题,也考查了等差数列的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于(  )
A.$\frac{32}{3}$B.16C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,己知a1=1,an-1=(1-$\frac{1}{n}$)an-$\frac{n-1}{{2}^{n-1}}$(n≥2且n∈N*
(1)若bn=$\frac{{a}_{n}}{n}$,求数列{bn}的通项公式;
(2)记数列{an}的前项和为Sn,问在△ABC中是否存在内角θ使Sn-n•tan2θ+5≥$\frac{n+2}{{2}^{n-1}}$对任意的n∈N*恒成立,若存在,求出角θ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,一个用斜二测法画出的水平放置的平面直观图,是一个直角梯形,O′A=5,AB=2,BD=3,∠O′AB=∠ABD=90°,则它的实际图形和面积分别是(  )
A.直角梯形、面积是16$\sqrt{2}$B.直角梯形、面积是8
C.梯形非直角,面积是16D.梯形非直角,面积是8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知二次函数的图象关于直线x=$\frac{3}{2}$对称,其与x轴两交点间距离为1,由顶点与两交点构成三角形的面积为$\frac{1}{8}$,求二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和为Sn,当数列{an}的通项公式为an=$\frac{1}{n+1}$,n∈N*,我们记实数λ为S2n-Sn的最小值,那么数列bn=$\frac{1}{n-100λ}$,n∈N*取得最大值时的项数n为34.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义一种运算a?b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,令f(x)=(3x2+6x)?(2x+3-x2),则函数f(x)的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.M是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,以Fx为始边,FM为终边的角∠xFM=60°,若|FM|=4,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知平面向量$\overrightarrow{a}$=(3,-6),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.4C.-1D.-4

查看答案和解析>>

同步练习册答案