精英家教网 > 高中数学 > 题目详情
3.执行如图程序框图,若输出的S值为62,则判断框内为(  )
A.i≤4?B.i≤5?C.i≤6?D.i≤7?

分析 模拟执行程序框图,依次写出每次循环得到的S,i的值,当S=62,i=6时应该不满足条件,退出循环,输出S的值为62,则判断框内为:i≤5.

解答 解:模拟执行程序框图,可得
S=0,i=1
满足条件,S=2,i=2
满足条件,S=6,i=3
满足条件,S=14,i=4
满足条件,S=30,i=5
满足条件,S=62,i=6
由题意可知,此时应该不满足条件,退出循环,输出S的值为62,
则判断框内为:i≤5,
故选:B.

点评 本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,i的值是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.曲线y=$\frac{sinx}{x}$在点M(π,0)处的切线与两坐标轴围成的三角形区域为D(不含三角形边界).若点P(x,y)是区域D内的任意一点,则x+4y的取值范围为(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项均为正数的数列{an}的前n项和为sn,a1=1,4sn=a${\;}_{n+1}^{2}$-4n-1,n∈N*
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)证明:n∈N*,有$\frac{1}{{a}_{1}{a}_{2}+1}$+$\frac{1}{{a}_{2}{a}_{3}+1}$+$\frac{1}{{a}_{3}{a}_{4}+1}$+…+$\frac{1}{{a}_{n}{a}_{n+1}+1}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等差数列{an}中a1=1,Sn为前n项和,且满足S2n-2Sn=n2(n∈N*).
(1)求a2及数列{an}的通项公式;
(2)记bn=n•2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=cos2(x+$\frac{π}{2}$)的单调递增区间(  )
A.(kπ,kπ+$\frac{π}{2}$)k∈ZB.(kπ+$\frac{π}{2}$,kπ+π)k∈ZC.(2kπ,2kπ+π)k∈ZD.(2kπ,2kπ+2π)k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sin$\frac{α}{8}$=-$\frac{3}{5}$,8π<α<12π,则tan$\frac{α}{4}$=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,a为双曲线虚轴的一个顶点,过点F、A的直线与双曲线的一条渐近线在y轴右侧的交点为B,若$\overrightarrow{AB}$=($\sqrt{2}$-1)$\overrightarrow{AF}$,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x-1}{lnx}$.
(Ⅰ)试判断函数y=f(x)在(1,+∞)上的单调性;
(Ⅱ)令an+1=f(an)(n∈N),若a1=$\sqrt{e}$,求证2nlnan≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校对数学、物理两科进行学业水平考前辅导,辅导后进行测试,按成绩(满分100分)划分为合格(成绩大于或等于70分)和不合格(成绩小于70分).现随机抽取两科各100名学生的成绩统计如下:
成绩(单位:分)[50,60)[60,70)[70,80)[80,90)[90,100]
数学81240328
物理71840296
(1)试分别估计该校学生数学、物理合格的概率;
(2)数学合格一人可以赢得4小时机器人操作时间,不合格一人则减少1小时机器人操作
时间;物理合格一人可赢得5小时机器人操作时间,不合格一人则减少2小时机器人操作时间.在(1)的前提下,
(i)记X为数学一人和物理一人所赢得的机器人操作时间(单位:小时)总和,求随机变量X 的分布列和数学期望;
(ii)随机抽取5名学生,求这5名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于14小时的概率.

查看答案和解析>>

同步练习册答案