精英家教网 > 高中数学 > 题目详情
已知函数f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=
2+x
x2+1
,求f(x)与g(x)的解析式.
考点:函数奇偶性的性质,函数解析式的求解及常用方法
专题:函数的性质及应用
分析:将-x代入已知等式,利用函数f(x)、g(x)的奇偶性,得到关于f(x)与g(x)的又一个方程,将二者看做未知数解方程组,解得f(x)和g(x)的解析式.
解答: 解:∵函数g(x)、f(x)分别是偶函数、奇函数,
∴g(-x)=g(x),f(-x)=-f(x),
令x取-x,代入g(x)+f(x)=
2+x
1+x2
①,
g(-x)+f(-x)=
2-x
1+x2

即g(x)-f(x)=
2-x
1+x2
②,
由①②解得,g(x)=
2
1+x2
,f(x)=
x
1+x2
点评:本题考查了函数奇偶性的性质的应用,以及列方程组法求函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα=
1
3
,求tanα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a3=3,a8=33,则{an}的公差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥的侧面与底面所成二面角的大小为α,侧棱与底面所成的角为β,则
tanα
tanβ
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-x2+x-5在R上无极值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为y=mx+2m,曲线C的方程为y=
4-x2
,直线l与曲线C交于A,B两点,设直线l与曲线C围成的平面区域为M,记Ω={(x,y)|
y≥0
y≤
4-x2
}
,向区域Ω上随机投一点D,点D落在区域M内的概率为P(M).(1)若m=1,求P(M);
(2)若P(M)∈[
π-2
,1]
,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象过点(0,1),且f(x)>0的解集是(-1,3),
(1)求f(x)的解析式;
(2)若f(sinα)+f(cosα)=
5
3
(0<α<π),求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一只渔船遭遇台风遇险,发出求救信号,在遇险地A西南方向10 n mile的B处有一只海船收到信号立即侦察,发现遇险船只沿南偏东75°,以9 n mile∕h的速度向前航行,渔船以21 n mile∕h的速度前往营救,并在最短时间内与渔船靠近.
(1)求渔船所花的最短时间;
(2)求渔船的航程;
(3)求渔船航向与BA的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别以双曲线G:
x2
2
-
y2
2
=1的焦点为顶点,以双曲线G的顶点为焦点作椭圆C.
(1)求椭圆C的方程;
(2)设点P的坐标为(0,
2
)
,在y轴上是否存在定点M,过点M且斜率为k的动直线l交椭圆于A、B两点,使以AB为直径的圆恒过点P,若存在,求出M的坐标和△PAB面积的最大值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案