精英家教网 > 高中数学 > 题目详情
8.若集合M={x|x2+5x-14<0},N={x|1<x<4},则M∩N等于(  )
A.B.(1,4)C.(2,4)D.(1,2)

分析 解关于M的不等式,求出M、N 的补集即可.

解答 解:M={x|x2+5x-14<0}={x|-7<x<2},N={x|1<x<4},
则M∩N={x|1<x<2},
故选:D.

点评 本题考查了集合的运算,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若由曲线y=x2+k2与直线y=2kx(k>0)及y轴所围成的平面图形的面积S=9,则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{2}=1$(a>0)的离心率为2,则a的值为$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若锐角α,β满足$sinα=\frac{4}{5}$,$tan(α-β)=\frac{2}{3}$,则tanβ=$\frac{6}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-ax,$g(x)=\frac{1}{x}+a$.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若f(x)•g(x)≤0在定义域内恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{ln(-x)+3,-2<x≤-1}\\{-{x}^{2}-2x+1,x>-1}\end{array}\right.$且f(2a)-$\frac{1}{2}$(2a+2)2<f(12-a)-$\frac{1}{2}$(14-a)2,则实数a的取值范围为(  )
A.(2,4)B.(4,14)C.(2,14)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在($\root{3}{2}$x2$-\frac{1}{\root{3}{2}x}$)4的展开式中,系数为有理数的项为(  )
A.第二项B.第三项C.第四项D.第五项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a≠0,函数f(x)=$\left\{\begin{array}{l}{4lo{g}_{2}(-x),x<0}\\{|{x}^{2}+ax|,x≥0}\end{array}\right.$,若f[f(-$\sqrt{2}$)]=4,则f(a)等于(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若y=f(x)是定义域在R上的函数,则y=f(x)为奇函数的一个充要条件为(  )
A.f(0)=0B.对?x∈R,f(x)=0都成立
C.?x0∈R,使得f(x0)+f(-x0)=0D.对?x∈R,f(x)+f(-x)=0都成立

查看答案和解析>>

同步练习册答案