精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=lnx-ax,$g(x)=\frac{1}{x}+a$.
(1)讨论函数F(x)=f(x)-g(x)的单调性;
(2)若f(x)•g(x)≤0在定义域内恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)通过讨论f(x)的符号,结合函数的单调性判断出a的范围即可.

解答 解:(1)$F(x)=f(x)-g(x)=lnx-ax-\frac{1}{x}-a$,(x>0).${F^'}(x)=\frac{1}{x}-a+\frac{1}{x^2}$…(1分)
①若a≤0时,F'(x)>0,则F(x)=f(x)-g(x)在(0,+∞)上是增函数…(2分)
②若 a>0时,令F′(x)>0,解得:0<x<$\frac{1+\sqrt{1+4a}}{2a}$,令F′(x)<0,解得:x>$\frac{1+\sqrt{1+4a}}{2a}$,
则F(x)=f(x)-g(x)在$(0,\frac{{1+\sqrt{1+4a}}}{2a})$上是增函数…(3分)
F(x)=f(x)-g(x)在$(\frac{{1+\sqrt{1+4a}}}{2a},+∞)$上是减函数…(4分)
(2)若f(x)•g(x)≤0在定义域内恒成立,考虑以下情形:
①当f(x)≤0,g(x)≥0同时恒成立时,
由$f(x)=lnx-ax≤0,a≥\frac{lnx}{x}$恒成立…(5分)
得:$a≥\frac{1}{e}$…(6分)
∵由$g(x)≥0,\frac{1}{x}+a≥0$恒成立得:a≥0.∴$a≥\frac{1}{e}$…(7分)
②当f(x)≥0,g(x)≤0同时恒成立时,a不存在;…(8分)
③当a<0时,∵f(x)=lnx-ax为增函数,$g(x)=\frac{1}{x}+a$为减函数,…(9分)
若它们有共同零点,则f(x)•g(x)≤0恒成立…(10分)
由f(x)=lnx-ax=0,$g(x)=\frac{1}{x}+a=0$,联立方程组解得:a=-e…(11分)
综上:$a≥\frac{1}{e}$或a=-e…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想、转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.用数学归纳法证明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n-2),则f(k+1)-f(k)等于(  )
A.3k-1B.3k+1C.8kD.9k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+3|+|x-1|的最小值为m.
(Ⅰ)求m的值以及此时的x的取值范围;
(Ⅱ)若实数p,q,r满足p2+2q2+r2=m,证明:q(p+r)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图的程序框图,输出的S的值是(  )
A.28B.36C.45D.55

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x),如果存在函数g(x)=ax+b,(a,b为常数),使得f(x)≥g(x)
对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数.给出如下命题:
①函数g(x)=-2是函数$f(x)=\left\{\begin{array}{l}lnx,x>0\\ 1,x≤0\end{array}\right.$的一个承托函数;
②函数g(x)=x-1是函数f(x)=x+sinx的一个承托函数;
③若函数g(x)=ax是函数f(x)=ex的一个承托函数,则a的取值范围是[0,e];
④值域是R的函数f(x)不存在承托函数.
其中正确的命题的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合M={x|x2+5x-14<0},N={x|1<x<4},则M∩N等于(  )
A.B.(1,4)C.(2,4)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若2f(x)+f(-x)=x3+x+3对x∈R恒成立,则曲线y=f(x)在点(2,f(2))处的切线方程为13x-y-15=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若复数z=$\frac{3-i}{|2-i|}$,则|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某几何体的三视图如图所示,则该几何体的体积是(  )
A.100B.82C.96D.112

查看答案和解析>>

同步练习册答案