精英家教网 > 高中数学 > 题目详情
12.已知全集为R,A={x$\frac{x-1}{x+1}$≤0},B={x|x>0},则∁R(A∩B)=(  )
A.(-∞,0]∪(1,+∞)B.(-∞,0][1,+∞)C.(-∞,-1)D.(-∞,-1]

分析 求出A中不等式的解集确定出A,找出A与B交集的补集即可.

解答 解:由A中不等式变形得:(x-1)(x+1)≤0,且x+1≠0,
解得:-1<x≤1,即A=(-1,1],
∵B=(0,+∞),
∴A∩B=(0,1],
则∁R(A∩B)=(-∞,0]∪(1,+∞),
故选:A.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx+a}{{e}^{x}}$(a∈R,e=2.71828…是自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a的值;
(Ⅱ)设g(x)=(x3+2x2+2x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<2+$\frac{2}{{e}^{a+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设H、P是△ABC所在平面上异于A、B、C的两点,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{h}$分别表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$,已知$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow{b}$•$\overrightarrow{h}$,$|{\overrightarrow{AH}}|=1$,$|{\overrightarrow{BH}}|=\sqrt{2}$,$|{\overrightarrow{BC}}|=\sqrt{3}$,点O是△ABC外接圆的圆心,则△AOB,△BOC,△AOC的面积之比为(  )
A.$1:\sqrt{2}:\sqrt{3}$B.$2:\sqrt{3}:1$C.$1:\sqrt{3}:2$D.$\sqrt{2}:1:\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.A?B?C三点在同一球面上,∠BAC=135°,BC=4,且球心O到平面ABC的距离为1,则此球O的体积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在多面体ABCDEF中,四边形ABCD是边长为1的正方形,BF⊥平面ABCD,DE∥BF.
(Ⅰ)求证:AC⊥EF;
(Ⅱ)若BF=2,DE=1,在EF上取点G,使BG∥平面ACE,求直线AG与平面ACE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC中,AB=$\sqrt{2}$,点D在边BC上,BD=2DC,cos∠DAC=$\frac{3\sqrt{10}}{10}$,cos∠C=$\frac{2\sqrt{5}}{5}$,则AC=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A(-1,2,7),B(-3,10,-9),则线段AB中点到坐标原点的距离是(  )
A.$\sqrt{21}$B.21C.$\sqrt{41}$D.42

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α,β为锐角,sinα=$\frac{3}{5}$,tanβ=2,则sin($\frac{π}{2}$+α)=$\frac{4}{5}$,tan(α+β)=$-\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算:(π-2)0-|$\root{3}{-8}$+$\sqrt{2}$|×(-$\frac{2}{\sqrt{8}}$).

查看答案和解析>>

同步练习册答案