精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知过椭圆C:=1(a>b>0)右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点;又函数图象的一条对称轴的方程是.
(1)求椭圆C的离心率e与直线AB的方程;
(2)对于任意一点M∈C,试证:总存在角θ(θ∈R)使等式+成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)为椭圆的左右顶点,点是椭圆上异于的动点,直线分别交直线两点.证明:以线段为直径的圆恒过轴上的定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1,F2是的左、右焦点,点P在椭圆上运动,则的最大值是
A.4B.5C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)
已知椭圆的焦点为, 
离心率为,直线轴,轴分别交于点
(Ⅰ)若点是椭圆的一个顶点,求椭圆的方程;
(Ⅱ)若线段上存在点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别为椭圆的左、右焦点,过的直
线与椭圆 相交于,两点,直线的倾斜角为到直线的距离为
(1)求椭圆的焦距;
(2)如果,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的对称轴为坐标轴,且抛物线的焦点是椭圆的一个焦点,又点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线的方向向量为,若直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F(c,0)为椭圆的右焦点,椭圆上的点与点F的距
离的最大值为M,最小值为m,则椭圆上与F点的距离是的点是
A.(B.(0,C.(D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知分别是椭圆的左、右焦点,点B是其上顶点,椭圆的右准线与轴交于点N,且
(1)求椭圆方程;
(2)直线与椭圆交于不同的两点M、Q,若△BMQ是以MQ为底边的等腰三角形,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上
(1)求椭圆E的方程;
(2)设l1l2是过点G(,0)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?
若经过,求出该定点坐标;若不经过,请说明理由。

查看答案和解析>>

同步练习册答案