精英家教网 > 高中数学 > 题目详情
14.在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,bsinB-asinA=$\frac{1}{2}$asinC,则cosB为(  )
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{3}{4}$C.$\frac{{\sqrt{7}}}{3}$D.$\frac{1}{3}$

分析 由正弦定理化简已知可得b2=a2+$\frac{1}{2}$ac=2a2,利用余弦定理可求cosB,从而得解.

解答 解:∵bsinB-asinA=$\frac{1}{2}$asinC,
∴由正弦定理可得:b2-a2=$\frac{1}{2}$ac,
又∵c=2a,
∴b2=a2+$\frac{1}{2}$ac=2a2
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{3}{4}$.
故选:B.

点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知方程x2-2mx+4=0的两个实数根均大于1,则实数m的范围是$[2,\frac{5}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若f'(x)是f(x)的导函数,f'(x)>2f(x)(x∈R),f(${\frac{1}{2}}$)=e,则f(lnx)<x2的解集为(0,$\sqrt{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x≥0,则y=x+$\frac{4}{x+1}$的取值范围为[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A,B,C所对的边分别为a,b,c,且(2a-c)cosB=bcosC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=-3.
(I)求△ABC的面积;
(II)若sinA:sinC=3:2,求AC边上的中线BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,且满足a1=2,an+1=2Sn+1,则数列{an}的通项公式为${a_n}=\left\{\begin{array}{l}2,n=1\\ 5•{3^{n-2}},n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式x2≥4的解集为(  )
A.{x|-2≤x≤2}B.{x|x≤-2或x≥2}C.{x|-2<x<2}D.{x|x<-2或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,a1=1,2an+1=an,若对于任意n∈N*,当t∈[-1,1]时,不等式x2+tx+1>Sn恒成立,则实数x的取值范围为(-∞,$\frac{-1-\sqrt{5}}{2}$]∪[$\frac{1+\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,如果(a+b+c)(b+c-a)=3bc,那么角A=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案