精英家教网 > 高中数学 > 题目详情
9.△ABC的内角A,B,C所对的边分别为a,b,c,且(2a-c)cosB=bcosC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=-3.
(I)求△ABC的面积;
(II)若sinA:sinC=3:2,求AC边上的中线BD的长.

分析 (I)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosB的值,即可确定出B的度数,利用平面向量数量积的运算可求ac的值,进而利用三角形面积公式即可计算得解.
(II)由正弦定理化简可得a=$\frac{3c}{2}$,结合ac=6,可求a,c的值,由于$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),平方后利用平面向量的运算即可解得AC边上的中线BD的长.

解答 (本题满分为12分)
解:(I)已知等式(2a-c)cosB=bcosC,
利用正弦定理化简得:(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,
∵sinA≠0,
∴cosB=$\frac{1}{2}$,
则B=60°.
又∵$\overrightarrow{AB}$•$\overrightarrow{BC}$=-3.
∴accos(π-B)=-3,
∴解得ac=6,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×$6×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$…6分
(II)∵由sinA:sinC=3:2,可得:a:c=3:2,解得:a=$\frac{3c}{2}$,
又∵由(I)可得:ac=6,
∴解得:a=3,c=2,
又∵$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),
∴4$\overrightarrow{BD}$2=$\overrightarrow{BA}$2+$\overrightarrow{BC}$2+2$\overrightarrow{BA}•\overrightarrow{BC}$=c2+a2-2$\overrightarrow{AB}•\overrightarrow{BC}$=22+32-2×(-3)=19,
∴|$\overrightarrow{BD}$|=$\frac{\sqrt{19}}{2}$,即AC边上的中线BD的长为$\frac{\sqrt{19}}{2}$…12分

点评 本题主要考查了正弦定理,两角和与差的正弦函数公式,诱导公式变形,平面向量数量积的运算,三角形面积公式,平面向量的运算在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设a=0.32,b=20.5,c=log24,则实数a,b,c的大小关系是a<b<c.(按从小到大的顺序用不等号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若点(sin$\frac{2π}{3}$,cos$\frac{2π}{3}}$)在角α的终边上,则sinα的值为(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{({\frac{1}{3}})^x}{,_{\;}}_{\;}x≤1\\{log_{\frac{1}{2}}}x{,_{\;}}x>1\end{array}\right.$,则f(f(${\sqrt{2}}$))=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x,y满足$\left\{\begin{array}{l}y≥2x\\ x+y≤3\\ x≥a\end{array}$且z=2x+y的最大值是其最小值的2倍,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,内角A,B,C的对边分别是a,b,c,若c=2a,bsinB-asinA=$\frac{1}{2}$asinC,则cosB为(  )
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{3}{4}$C.$\frac{{\sqrt{7}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,且a2=3,S5=25.
(1)求数列{an}的通项公式an
(2)设数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n项和为Tn,是否存在k∈N*,使得等式2-2Tk=$\frac{1}{3^k}$成立,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,角A,B,C的对边分别为a,b,c,且cosC=$\frac{2a-c}{2b}$.
(1)求角B的大小;
(2)若BD为AC边上的中线,cosA=$\frac{1}{7}$,BD=$\frac{{\sqrt{129}}}{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面上$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=1,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,|$\overrightarrow{OP}$|<$\frac{1}{3}$,则|$\overrightarrow{OA}$|的取值范围(  )
A.$(0,\frac{{\sqrt{10}}}{3}]$B.$(\frac{{\sqrt{10}}}{3},\frac{{\sqrt{17}}}{3}]$C.$(\frac{{\sqrt{10}}}{3},\sqrt{2}]$D.$(\frac{{\sqrt{17}}}{3},\sqrt{2}]$

查看答案和解析>>

同步练习册答案