精英家教网 > 高中数学 > 题目详情
6.已知复数z=-2+ai(a∈R,i是虚数单位)在复平面内对应的点在第二象限,且z•$\overline{z}$=6,则a=(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.2D.-2

分析 由复数z=-2+ai求出z•$\overline{z}$然后求出a的值,再由复数z=-2+ai(a∈R,i是虚数单位)在复平面内对应的点在第二象限,得到符合条件的a的值.

解答 解:∵z=-2+ai,
∴$z•\overline{z}=(-2+ai)×(-2-ai)$=4+a2=6.
解得:a=$±\sqrt{2}$.
∵复数z=-2+ai(a∈R,i是虚数单位)在复平面内对应的点在第二象限,
∴a=$\sqrt{2}$.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了共轭复数的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=cos(sinx)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个不透明的袋子里装有外形和质地完全一样的5个白球,3个红球,2个黄球,将它们充分混合后,摸得一个白球计2分,摸得一个红球记3分,摸得一个黄球计4分,若用随机变量ξ表示随机摸一个球的得分,则随机变量ξ的数学期望Eξ的值是2.7分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z-|z|=3-i,则z的虚部为(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$⊥$\overrightarrow{b}$”是|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条既

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序,输出的S为(  )
A.-1006B.1007C.-1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,a、b、c分别为内角∠A、∠B、∠C的对边,已知a+c=4$\sqrt{3}$,则△ABC面积的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读如图的程序框图,当该程序运行后输出的x值是(  )
A.2B.-5C.-$\frac{1}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PC⊥底面ABCD.底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E是线段PB的中点.
(Ⅰ)证明:AC⊥平面PBC;
(Ⅱ)若点P到平面ACE的距离是$\frac{{\sqrt{6}}}{3}$,求三棱锥P-ACD的体积.

查看答案和解析>>

同步练习册答案