精英家教网 > 高中数学 > 题目详情
18.在△ABC中,a、b、c分别为内角∠A、∠B、∠C的对边,已知a+c=4$\sqrt{3}$,则△ABC面积的最大值为6.

分析 由条件可得△ABC的面积S=$\frac{1}{2}$ac•sinB 再利用正弦函数的值域、基本不等式求得S的最大值.

解答 解:在△ABC中,∵a+c=4$\sqrt{3}$,
∴△ABC的面积S=$\frac{1}{2}$ac•sinB≤$\frac{1}{2}$•($\frac{a+c}{2}$)2=$\frac{1}{2}$×$\frac{48}{4}$=6,
当且仅当a=c=2$\sqrt{3}$,且 B=90°时,取等号,
故△ABC面积的最大值是 6,
故答案为:6.

点评 本题主要考查三角形的面积,正弦函数的值域、基本不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士--12369”的绿色环保活动小组对2014年1月-2014年12月(一月)内空气质量指数API进行监测,如表是在这一年随机抽取的100天的统计结果:
指数API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中重度污染重度污染
天数413183091115
(Ⅰ)若市某企业每天由空气污染造成的经济损失P(单位:元)与空气质量指数API(记为t)的关系为:$P=\left\{\begin{array}{l}0,0≤t≤100\\ 4t-400,100<t≤300\\ 1500,t>300\end{array}\right.$,在这一年内随机抽取一天,估计该天经济损失P∈(200,600]元的概率;
(Ⅱ)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2×2列联表,并判断是否有95%的把握认为A市本年度空气重度污染与供暖有关?
非重度污染重度污染合计
供暖季22830
非供暖季63770
合计8515100
下面临界值表功参考.
P(K2≥k)0.150.100.050.0100.0050.001
k2.0722.7063.8416.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知变量x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ 3x-y-2≥0\\ x+y-6≥0\end{array}\right.$,则目标函数z=2x+y(  )
A.有最小值3,最大值9B.有最小值9,无最大值
C.有最小值8,无最大值D.有最小值3,最大值8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=-2+ai(a∈R,i是虚数单位)在复平面内对应的点在第二象限,且z•$\overline{z}$=6,则a=(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四棱锥P-ABCD底面是平行四边形,E,F分别为AD,PC的中点,
EF⊥BD,2AP=2AB=AD,以AD为直径的圆经过点B.
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)若AB=PB=2.求三棱锥C-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+ax2+x(a∈R).
(1)若函数f(x)在x=1处的切线平行于x轴,求实数a的值,并求此时函数f(x)的极值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下列两个命题,命题p:“x>3”是“x>5”的充分不必要条件;命题q:函数y=log2($\sqrt{{x}^{2}+1}$-x)是奇函数,则下列命题是真命题的是(  )
A.p∧qB.p∨¬qC.p∨qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥P-ABC中,PA⊥平面ABC,BC⊥PB.
(1)求证:点P、A、B、C在同一个球面上;
(2)设PA=AB=BC=2,求三棱锥A-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A、B、C的对边分别为a、b、c,若a2-c2=2b且tanA=3tanC,则b=4.

查看答案和解析>>

同步练习册答案