精英家教网 > 高中数学 > 题目详情
10.给出下列两个命题,命题p:“x>3”是“x>5”的充分不必要条件;命题q:函数y=log2($\sqrt{{x}^{2}+1}$-x)是奇函数,则下列命题是真命题的是(  )
A.p∧qB.p∨¬qC.p∨qD.p∧¬q

分析 先判定命题p,q的真假,再利用复合命题真假判定的方法即可判断出.

解答 解:命题p:“x>3”是“x>5”的必要不充分条件,因此是假命题;
命题q:函数y=log2($\sqrt{{x}^{2}+1}$-x),定义域为R,又f(-x)=log2($\sqrt{{x}^{2}+1}$+x)=-log2($\sqrt{{x}^{2}+1}$-x)=-f(x),
因此函数f(x)是奇函数,是真命题.
则下列命题是真命题的是p∨q.
故选:C.

点评 本题考查了充要条件的判定方法、函数的奇偶性、对数函数的性质、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设m个不全相等的正数a1,a2,…,am(m≥3)依次围成一个圆圈.
(1)设m=2015,且a1,a2,a3,…,a1008是公差为d的等差数列,而a1,a2015,a2014,…,a1009是公比为q=d的等比数列;数列a1,a2,…,am的前n项和Sn(n≤m)满足S3=15,S2015=S2013+12a1,求数列{an}的通项公式;
(2)设a1=a,a2=b(a≠b),若数列a1,a2,…,am每项是其左右相邻两数平方的等比中项,求a8
(3)在(2)的条件下,m≤2015,求符合条件的m的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$⊥$\overrightarrow{b}$”是|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条既

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,a、b、c分别为内角∠A、∠B、∠C的对边,已知a+c=4$\sqrt{3}$,则△ABC面积的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示如图,其中茎为十位数,叶为个位数,则这组数据的平均数和方差分别是(  )
A.91  5.5B.91  5C.92  5.5D.92  5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读如图的程序框图,当该程序运行后输出的x值是(  )
A.2B.-5C.-$\frac{1}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.关于x的方程(a+1)x2+(4a+2)x+1-3a=0有两个异号的实根,且负根的绝对值较大,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=$\frac{1}{2}{x^2}$,g(x)=alnx(a>0).
(Ⅰ)求函数F(x)=f(x)•g(x)的极值;
(Ⅱ)若函数G(x)=f(x)-g(x)+(a-1)x在区间$(\frac{1}{e},e)$内有两个零点,求实数a的取值范围;
(Ⅲ)求证:当x>0时,lnx+$\frac{3}{{4{x^2}}}-\frac{1}{e^x}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-5≤0}\\{x-2y+1≤0}\\{x-1≥0}\end{array}\right.$,则$\frac{y}{x}$的最小值是(  )
A.1B.4C.$\frac{2}{3}$D.0

查看答案和解析>>

同步练习册答案