3£®Èçͼ£¬ÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãÔÚÖ±Ïßl£ºx=1ÉÏ£¬ÀëÐÄÂÊ$e=\frac{1}{2}$
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©Èç¹ûP¡¢QΪÍÖÔ²Éϲ»Í¬µÄÁ½µã£¬ÇÒÏÒPQµÄÖеãTÔÚÖ±ÏßlÉÏ£¬ÊÔÖ¤£ºXÖáÉÏ´æÔÚ¶¨µãR£¬¶ÔÓÚËùÓÐÂú×ãÌõ¼þµÄP¡¢Q£¬ºãÓÐ|RP|=|RQ|£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¡÷PQRÄÜ·ñΪµÈÑüÖ±½ÇÈý½ÇÐΣ¿Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©ÀûÓÃÍÖÔ²µÄÐÔÖÊ¡¢ÀëÐÄÂʼÆË㹫ʽe£¬¼°a2=b2+c2¼´¿ÉµÃ³ö£»
£¨2£©Éè P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£®¼ÙÉèXÖáÉÏ´æÔÚ¶¨µãR£¬¶ÔÓÚËùÓÐÂú×ãÌõ¼þµÄP¡¢Q£¬ºãÓÐ|RP|=|RQ|£»µÃ£¨m-x1£©2+y12=£¨m-x2£©2+y22£¬¼´£¨2m-2£©£¨x1-x2£©=-$\frac{3}{2k}£¨{y}_{1}-{y}_{2}£©$=-$\frac{3}{2}£¨{x}_{1}-{x}_{2}£©$£¬µÃm=$\frac{1}{4}$£¬
£¨3£©·ÖÀàÌÖÂÛ£¬ÀûÓõÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʺÍÁ½µã¼äµÄ¾àÀë¹ØÏµ¼°Æä¸ùÓëϵÊýµÄ¹ØÏµ¼´¿ÉµÃµ½Âú×ãÌõ¼þµÄÖ±ÏßбÂÊk´æÔÚ¼´¿É£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãÔÚÖ±Ïßl£ºx=1ÉÏ£¬ÀëÐÄÂÊ$e=\frac{1}{2}$
¡à$c=1£¬\frac{c}{a}=\frac{1}{a}=\frac{1}{2}$£¬¡àa=2
b=$\sqrt{{a}^{2}-{c}^{2}}=\sqrt{3}$£¬
¡àÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
£¨2£©ÒÀÌâÒâ¿ÉµÃÖ±ÏßPQµÄбÂʲ»Îª0£¬
¹ÊÉèÖ±ÏßPQ·½³ÌΪ£ºy=kx+b
ÓÉ$\left\{\begin{array}{l}{y=kx+b}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$µÃ£¨4k2+3£©x2+8kbx+4b2-12=0£®
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{-8kb}{4{k}^{2}+3}=2$£¬
¿ÉµÃb=$-k-\frac{3}{4k}$
y1+y2=kx1+b+kx2+b=2k+2b=-$\frac{3}{2k}$£®
¼ÙÉèXÖáÉÏ´æÔÚ¶¨µãR£¬¶ÔÓÚËùÓÐÂú×ãÌõ¼þµÄP¡¢Q£¬ºãÓÐ|RP|=|RQ|£»
µÃ£¨m-x1£©2+y12=£¨m-x2£©2+y22
¡à£¨2m-2£©£¨x1-x2£©=-$\frac{3}{2k}£¨{y}_{1}-{y}_{2}£©$=-$\frac{3}{2}£¨{x}_{1}-{x}_{2}£©$
¡ßx1¡Ùx2£¬¡àm=$\frac{1}{4}$£¬
¼´µãR£¨$\frac{1}{4}$£¬0£©£¬
µ±Ö±ÏßPQµÄбÂʲ»´æÔÚʱ£¬ÏÔÈ»³ÉÁ¢£®
×ÛÉÏ£¬XÖáÉÏ´æÔÚ¶¨µãR£¨$\frac{1}{4}£¬0$£©£¬¶ÔÓÚËùÓÐÂú×ãÌõ¼þµÄP¡¢Q£¬ºãÓÐ|RP|=|RQ|£»
£¨3£©£¬¡÷PQRΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ôò$\overrightarrow{RQ}•\overrightarrow{RP}=0$£®
¼´$£¨{x}_{1}-\frac{1}{4}£¬{y}_{1}£©$$•£¨{x}_{2}-\frac{1}{4}£¬{y}_{2}£©$=0£¬¡à£¨x1-$\frac{1}{4}$£©£¨x2-$\frac{1}{4}$£©+y1y2=0
¡à${x}_{1}{x}_{2}-\frac{1}{4}£¨{x}_{1}+{x}_{2}£©+\frac{1}{16}$+£¨kx1+b£©£¨kx2+b£©=0£®
¡à$£¨{k}^{2}+1£©{x}_{1}{x}_{2}-\frac{7}{16}+2kb+{b}^{2}=0$£®
¡à£¨k2+1£©$•\frac{4£¨-k-\frac{3}{4k}£©^{2}-12}{4{k}^{2}+3}-\frac{7}{16}+2k£¨-k-\frac{3}{4k}£©$+£¨-k-$\frac{3}{4k}$£©2=0£®
»¯¼òµÃ£¨12k2-7£©£¨k2+1£©=0
k2=$\frac{7}{12}$£¬k=¡À$\frac{\sqrt{21}}{6}$
¡à£¨2£©µÄÌõ¼þÏ£¬¡÷PQRÄÜΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬´ËʱPQµÄбÂÊΪ¡À$\frac{\sqrt{21}}{6}$

µãÆÀ ±¾Ìâ×ۺϿ¼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯ÎªÖ±ÏßlµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹ØÏµ¡¢´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ¡¢Á½µã¼äµÄ¾àÀ빫ʽ¡¢Ð±ÂʼÆË㹫ʽµÈ»ù´¡ÖªÊ¶Óë»ù±¾ÄÜÁ¦£¬¿¼²éÁËÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÈôÃݺ¯Êýf£¨x£©µÄͼÏó¾­¹ýµã$£¨27£¬\frac{1}{9}£©$£¬Ôò¸Ãº¯Êý½âÎöʽΪf£¨x£©=${x}^{-\frac{2}{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èô$tan£¨¦Á+\frac{¦Ð}{4}£©=5$£¬Ôò$\frac{1}{sin¦Ácos¦Á}$=$\frac{13}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®É躯Êýf£¨x£©=ka-x£¨k¡ÊR£¬a£¾1£©µÄͼÏó¹ýµãA£¨0£¬8£©£¬B£¨3£¬1£©£¬ÔòlogakµÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÉèµÈ²îÊýÁÐ{an}ÊÇÎÞÇîÊýÁУ¬ÇÒ¸÷Ïî¾ùΪ»¥²»ÏàͬµÄÕýÕûÊý£¬ÆäǰnÏîºÍΪSn£¬ÊýÁÐ{bn}Âú×ãbn=$\frac{{S}_{n}}{{a}_{n}}$-1£¬n¡ÊN*£®
£¨1£©Èôa2=5£¬S5=40£¬Çób2µÄÖµ£»
£¨2£©ÈôÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬Çóbn£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÇóÖ¤£ºÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏ°´Ô­À´µÄ˳Ðò£©³ÉµÈ±ÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏA={x|1£¼x£¼3}£¬B={x|x¡Ý2}£®
£¨1£©ÇóA¡ÉB£»
£¨2£©Èô¼¯ºÏC={x|x£¾a}£¬ÇÒÂú×ãB¡ÈC=C£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÖ±Ïß$l£ºmx+y+3m-\sqrt{3}=0$ÓëÔ²x2+y2=12½»ÓÚA£¬BÁ½µã£¬¹ýA£¬B·Ö±ð×÷lµÄ´¹ÏßÓëxÖá½»ÓÚC£¬DÁ½µã£¬$AB=2\sqrt{3}$£¬Ôò|CD|=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ô²Öù±»Ò»¸öÆ½Ãæ½ØÈ¥Ò»²¿·ÖºóÓ볤·½Ìå×é³ÉÒ»¸ö¼¸ºÎÌ壬¸Ã¼¸ºÎÌåµÄÕýÊÓͼºÍ¸©ÊÓͼÈçͼËùʾ£¬ÒÑÖª¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ58+12¦Ð£¬ÔòÔ²ÖùµÄ°ë¾¶r=£¨¡¡¡¡£©
A£®1B£®2C£®$\frac{3}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¶¯Ô²P¹ý¶¨µãF£¨1£¬0£©ÇÒºÍÖ±Ïßl£ºx=-1ÏàÇУ®
£¨1£©Ç󶯵ãPµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©Èô¹ýµãFµÄÖ±ÏßÓë¹ì¼£E½»ÓÚA£¬BÁ½µã£¬µãM£¨-1£¬0£©£¬ÇóÖ¤£ºÖ±ÏßMA¡¢MBµÄбÂÊÖ®ºÍΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸