精英家教网 > 高中数学 > 题目详情
16.设i是虚数单位,则复数$\frac{3+4i}{1-i}$的共轭复数为(  )
A.-$\frac{1}{2}$+$\frac{7}{2}$iB.-$\frac{1}{2}$-$\frac{7}{2}$iC.$\frac{1}{2}$-$\frac{7}{2}$iD.$\frac{1}{2}$+$\frac{7}{2}$i

分析 利用复数代数形式的乘除运算化简,然后求其共轭复数得答案.

解答 解:∵$\frac{3+4i}{1-i}$=$\frac{(3+4i)(1+i)}{(1-i)(1+i)}=\frac{-1+7i}{2}=-\frac{1}{2}+\frac{7}{2}i$,
∴复数$\frac{3+4i}{1-i}$的共轭复数为$-\frac{1}{2}-\frac{7}{2}i$,
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知向量$\vec a$=(m,1),$\vec b$=(1,0),$\vec c$=(3,-3),满足($\vec a$+$\vec b$)∥$\vec c$,则m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.春节期间,小明得到了10个红包,每个红包内的金额互不相同,且都不超过150元.已知红包内金额在(0,50]的有3个,在(50,100]的有5个,在(100,150]的有2个.
(Ⅰ)小明为了感谢父母,特地从金额在(0,50]和(100,150]的红包中拿出两个给父母,求这两个红包中至少有一个红包的金额在(100,150]的概率;
(Ⅱ)试估计这个春节小明所得10个红包金额的平均数,并估计小明所得红包总金额.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(2x)=1og3(8x2+7),则f(1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边分别为a,b,c,A=$\frac{3π}{4}$,cosB=$\frac{3\sqrt{10}}{10}$,AD为BC边上的中线,且AD=1.
(1)求sinC的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x≤1}\\{lo{g}_{3}(x+1),x>1}\end{array}\right.$,则f[f(2)]=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设变量x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-2≤0}\end{array}\right.$,则目标函数z=y-2x的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知各项均为正数的数列{an}的前n项和为Sn,满足a${\;}_{n+1}^{2}$=2Sn+n+4,a2-1,a3,a7恰为等比数列{bn}的前3项.
(I)求数列{an}、{bn}的通项公式;
(Ⅱ)若cn=(-1)nanbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在正方形ABCD内任取一点P,求∠APB>120°的概率.

查看答案和解析>>

同步练习册答案