分析 (Ⅰ)将n换为n-1,两式相减,可得an+1-an=1,即公差d=1,再由等比数列的性质和等差数列的通项公式,解方程可得a2=3,再由等差数列的通项公式可得通项;再由等比数列的定义和通项公式可得所求;
(Ⅱ)由(Ⅰ)求出cn=(-1)nanbn=(n+1)(-2)n,结合数列的特点利用错位相减法,可求前n项和Tn.
解答 解:(I)∵an+12=2Sn+n+4,∴当n≥2时,an2=2Sn-1+n+3,两式相减可得:an+12-an2=2an+1,
∴an+12=(an+1)2,
∵数列{an}是各项均为正数的数列,∴an+1=an+1,即an+1-an=1,
∴a2-a1=1.又a22=2a1+5,联立解得a1=2.
∴数列{an}是等差数列,首项为2,公差为1.
∴an=2+(n-1)=n+1.
∴a2-1=2,a3=4,a7=8,
∴等比数列{bn}的公比q=$\frac{4}{2}$=2,首项为2.
∴bn=2n,
(Ⅱ)cn=(-1)nanbn=(-1)n(n+1)2n=(n+1)(-2)n,
∴Tn=2×(-2)+3×(-2)2+4×(-2)3+…+(n+1)(-2)n,①
-2Tn=2×(-2)2+3×(-2)3+4×(-2)4+…+n(-2)n+(n+1)(-2)n+1,②
相减可得3Tn=(-2)+(-2)2+(-2)3+…+(-2)n-(n+1)(-2)n+1=$\frac{(-2)[1-(-2)^{n}]}{1-(-2)}$-(n+1)(-2)n+1=-$\frac{3n+2}{3}$•(-2)n+1-$\frac{2}{3}$
∴Tn=-$\frac{3n+2}{9}$•(-2)n+1-$\frac{2}{9}$
点评 本题主要考查了利用基本量表示等差数列及等比 数列的通项公式,错位相减求数列的和是数列求和方法中的重点和难点.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$+$\frac{7}{2}$i | B. | -$\frac{1}{2}$-$\frac{7}{2}$i | C. | $\frac{1}{2}$-$\frac{7}{2}$i | D. | $\frac{1}{2}$+$\frac{7}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com