精英家教网 > 高中数学 > 题目详情
13.设函数y=sinax+b(a>0)的图象如图所示,则函数y=loga(x+b)的图象可能是(  )
A.B.C.D.

分析 根据条件求出a、b的范围,可得函数y=loga(x+b)的单调性以及图象经过的定点,结合所给的选项得出结论.

解答 解:有函数的图象可得0<b<1,$\frac{T}{2}$=$\frac{π}{a}$>2π-π,∴0<a<1.
故函数y=loga(x+b)为减函数,且图象经过点(1-b,0),(0,logab),logab>0.
结合所给的选项,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象特征,对数函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,-2≤x≤0}\\{ln\frac{1}{x+1},0≤x≤2}\end{array}\right.$,若g(x)=|f(x)|-ax-a的图象与x轴有3个不同的交点,则实数a的取值范围是$\frac{ln3}{3}$≤a<$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在△ABC中,AB=3,AC=2,BC=4,点D在边BC上,∠BAD=45°,则tan∠CAD的值为$\frac{8+\sqrt{15}}{7}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图复平面内的点A表示复数z,则复数$\frac{z}{1+i}$表示的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{2a+i}{1-2i}$(i为虚数单位)为纯虚数,则实数a的值(  )
A.1B.-1C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且$\overrightarrow{a}⊥\overrightarrow{b}$,则|$\overrightarrow{a}+\overrightarrow{b}$|为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a,b∈R,则命题“若a2+b2=0,则a=0或b=0”的否命题是(  )
A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0
C.若a≠0且b≠0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC的内角A,B,C的对边分别为a,b,c,若c=$\sqrt{2}$,b=$\sqrt{6}$,△ABC的面积为$\sqrt{2}$.
(Ⅰ)cosA和边a;
(Ⅱ)sin(A+B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,b=2,$cosC=\frac{3}{4}$,△ABC的面积为$\frac{{\sqrt{7}}}{4}$.
(Ⅰ)求a的值;
(Ⅱ)求sin2A值.

查看答案和解析>>

同步练习册答案