分析 (Ⅰ)由已知及三角形面积公式可得$\sqrt{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×$\sqrt{12}$×sinA,可解得sinA,由同角三角函数关系式即可求cosA,由余弦定理可解得a的值.
(Ⅱ)由正弦定理可得sin(A+B)=sin(π-C)=sinC=$\frac{csinA}{a}$,从而得解.
解答 解:(Ⅰ)∵c=$\sqrt{2}$,b=$\sqrt{6}$,△ABC的面积$\sqrt{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×$\sqrt{12}$×sinA,可解得:sinA=$\frac{\sqrt{6}}{3}$,
∴cosA=±$\sqrt{1-si{n}^{2}A}$=±$\frac{\sqrt{3}}{3}$,
∴由余弦定理可得:a2=b2+c2-2bccosA=8±4=4,从而解得:a=2或2$\sqrt{3}$.
(Ⅱ)由(Ⅰ)可得:sin(A+B)=sin(π-C)=sinC=$\frac{csinA}{a}$=$\frac{\sqrt{3}}{3}$或$\frac{1}{3}$.
点评 本题主要考查了正弦定理,三角形面积公式,三角形内角和定理,余弦定理,同角三角函数关系式的综合应用,属于基本知识的考查.
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | $4\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com