精英家教网 > 高中数学 > 题目详情
用数字0,1,2,3,4,5组成没有重复数字的四位数,其中能被3整除的四位数有
 
个.
考点:计数原理的应用
专题:应用题,排列组合
分析:各位数字之和是3的倍数能被3整除,符合题意的有:一类:含0、3则需1、4 和2、5各取1个,可组成C21C21C31A33;二类:含0或3中一个均不适合题意;三类:不含0,3,由1、2、4、5可组成A44个,相加得到结果.
解答: 解:各位数字之和是3的倍数能被3整除,符合题意的有:
一类:含0、3则需1、4 和2、5各取1个,可组成C21C21C31A33
二类:含0或3中一个均不适合题意;
三类:不含0,3,由1、2、4、5可组成A44个,
共有C21C21C31A33+A44=96个.
故答案为:96.
点评:本题考查排列组合的实际应用,本题是一个数字问题,解题的关键是注意0不能在首位,注意分类和分步的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面内点P(x,y)满足不等式(x+2y-1)(x-y+3)≥0,求x2+y2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是计算1+3+5+…+2007的算法程序框图,需要填入的内容是:
 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

5个人排成一排,其中甲不与乙相邻,则丙与丁必须相邻,则不同的排法总数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若|
a
|=1,|
b
|=2,|
c
|=3,<
a
b
>=60°,则|
a
+
b
+
c
|的最小值为
 
,最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,根据图中数据,可得该几何体的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0为常数,函数f(x)=
x
-ln(x+a)
(1)当a=
3
4
时,求f(x)的极大值和极小值;
(2)若使函数f(x)为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足条件
x+2y-9≤0
x-4y+3≤0
x≥1
,若目标函数z=ax+y(a∈R)取得最大值时的最优解有无数个,则z=ax+y的最小值为(  )
A、
1
2
B、
3
2
C、
3
4
D、
5
4

查看答案和解析>>

同步练习册答案