精英家教网 > 高中数学 > 题目详情
如图所示,在三棱锥P—ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,
OP⊥底面ABC.
(1)若k=1,试求异面直线PA与BD所成角余弦值的大小;
(2)当k取何值时,二面角O—PC—B的大小为
(1) 异面直线PA与BD所成角的余弦值的大小为. (2)k=时,二面角O—PC—B的大小为
 ∵OP⊥平面ABC,又OA=OC,AB=BC,

从而OA⊥OB,OB⊥OP,OA⊥OP,
以O为原点,建立如图所示空间直角坐标系O—xyz.
(1)设AB=a,则PA=a,PO=a,
A(a,0,0),B(0,a,0),
C(-a,0,0),P(0,0,a),
则D(-a,0,a).
=(a,0,-a ),=(-a,-a,a),
∴cos〈,〉===-,
则异面直线PA与BD所成角的余弦值的大小为.
(2)设AB=a,OP=h,∵OB⊥平面POC,
=(0,a,0)为平面POC的一个法向量.
不妨设平面PBC的一个法向量为n=(x,y,z),
∵A(a,0,0),B(0,a,0),C(-a,0,0),P(0,0,h),
=(-a,- a,0),="(-" a,0,-h),

不妨令x=1,则y=-1,z=-
即n="(1,-1,-" ),则cos=
==2+=4h=a,
∴PA===a,
而AB=kPA,∴k=.
故当k=时,二面角O—PC—B的大小为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P—ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.

求证:(1)直线PA∥平面DFE;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,
(1)若点在对角线上移动,求证:
(2)当为棱中点时,求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设向量并确定的关系,使轴垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,是正三角形,D的中点,二面角为120,.取AC的中点O为坐标原点建立空间直角坐标系,如图所示,BDz轴于点E.
(I)求BDP三点的坐标;
(II)求异面直线ABPC所成的角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图3,直三棱柱中,底面是等腰直角三角形,,侧棱分别是的中点,点在平面上的射影是的重心,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是平面内的三点,设平面的法向量,则________________。

查看答案和解析>>

同步练习册答案