精英家教网 > 高中数学 > 题目详情
设向量并确定的关系,使轴垂直.
解:(9,15,-12)-(4,2,16)=(5,13,-28)
(3,5,-4)(2,1,8)=6+5-32=-21


即当满足=0即使与z轴垂直.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,,点的中点.

(1)求异面直线所成角的余弦值;
(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P是正方形ABCD外一点,PA平面ABCD,PA=AB=2,且E、F分别是AB、PC的中点.
(1)求证:EF//平面PAD;
(2)求证:EF平面PCD;
(3)求:直线BD与平面EFC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面的法向量,平面的法向量,若,则k的值为
A.5B.4
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,.
(1)求证:平面平面
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱锥P—ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,
OP⊥底面ABC.
(1)若k=1,试求异面直线PA与BD所成角余弦值的大小;
(2)当k取何值时,二面角O—PC—B的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l∥,且l的方向向量为(2, m, 1), 平面的法向量为(1,, 2), 则m=       .

查看答案和解析>>

同步练习册答案