分析 (Ⅰ)判断动点G的轨迹是抛物线,求出p即可求解抛物线方程;
(Ⅱ)设出直线方程,联立直线与抛物线方程,利用韦达定理求解即可.
解答 解:(I)由题意得,动点G的轨迹是抛物线,…(2分)
∴$\frac{p}{2}=2,p=4$.…(3分)
∴动点G的轨迹方程C:y2=8x.…(5分)
(II)设直线l:x=my+2,
联立方程组$\left\{\begin{array}{l}x=my+2\\{y^2}=8x\end{array}\right.$…(7分)
化简整理,得y2-8my-16=0.…(9分)
∴y1•y2=-16.…(10分)
点评 本题考查抛物线的简单性质的应用,轨迹方程的求法,直线与抛物线的位置关系的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生 | A | B | C | D | E |
| 数学 | 80 | 75 | 70 | 65 | 60 |
| 物理 | 70 | 66 | 68 | 64 | 62 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com