精英家教网 > 高中数学 > 题目详情
10.假设学生在高中时数学成绩和物理成绩是线性相关的,若5个学生在高一下学期某次考试中数学成绩x和物理成绩y(总分100分)如下:
学生ABCDE
数学8075706560
物理7066686462
(1)试求这次高一数学成绩和物理成绩间的线性回归方程.
(2)若小红这次考试的数学成绩是52分,你估计她的物理成绩是多少分呢?供参考的数据:80×70+75×66+70×68+65×64+60×62=23190;802+752+702+652+602=24750.

分析 (1)设物理成绩y与数学成绩x的线性回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,求得样本中心点($\overline{x}$,$\overline{y}$),利用最小二乘法求得$\widehat{b}$=$\frac{\sum_{i=1}^{5}({x}_{i}{y}_{i}-n\overline{x}\overline{y})}{\sum_{i=1}^{5}({x}_{i}^{2}-n{\overline{x}}^{2})}$=0.36,将样本中心点代入即可求得$\widehat{a}$,求得线性回归方程;
(2)将x=52代入回归直线方程,得y=0.36×52+40.8=59.52,即可求得她的物理成绩.

解答 解:(1)设物理成绩y与数学成绩x的线性回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
由$\overline{x}$=$\frac{80+75+70+65+60}{5}$=70,…(2分)
$\overline{y}$=$\frac{70+68+66+64+62}{5}$=66,…(4分)
$\widehat{b}$=$\frac{\sum_{i=1}^{5}({x}_{i}{y}_{i}-n\overline{x}\overline{y})}{\sum_{i=1}^{5}({x}_{i}^{2}-n{\overline{x}}^{2})}$=0.36,…(5分)
$\widehat{a}$=$\widehat{y}$-0.36$\overline{x}$=40.8,
∴回归方程为$\widehat{y}$=0.36x+40.8,…(7分)
(2)将x=52代入回归直线方程,得y=0.36×52+40.8=59.52,
所以她的物理成绩59.52.…(10分)

点评 本题考查线性回归方程的应用,考查最小二乘法求线性回归方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+2ax+b,x∈[-1,1].
(Ⅰ)用a,b表示f(x)的最大值M;
(Ⅱ)若b=a2,且f(x)的最大值不大于4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,正确的是(  )
A.sin($\frac{3π}{2}$+α)=cosαB.常数数列一定是等比数列
C.若0<a<$\frac{1}{b}$,则ab<1D.x+$\frac{1}{x}$≥2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-9.60-(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2   (2)log225•log32$\sqrt{2}$•log59.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.521化为二进制数是1000001001(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面内动点G到点F(2,0)的距离与到直线x=-2距离相等.
(Ⅰ)求动点G的轨迹方程C;
(Ⅱ)设过点F的直线l交动点G的轨迹于A(x1,y1),B(x2,y2)两点,求y1•y2值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)在区间[a,b]上为单调函数,且图象是连续不断的曲线,则下列说法中正确的是(  )
A.函数f(x)在区间[a,b]上不可能有零点
B.函数f(x)在区间[a,b]上一定有零点
C.若函数f(x)在区间[a,b]上有零点,则必有f(a)•f(b)<0
D.若函数f(x)在区间[a,b]上没有零点,则必有f(a)•f(b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{x+2}{x-2}$.
(1)在下列坐标系中作出函数f(x)的大致图象;
(2)将函数f(x)的图象向下平移一个单位得到函数g(x)的图象,点A是函数g(x)图象的上一点,B(4,-2),求|AB|的最小值.

查看答案和解析>>

同步练习册答案