精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=\frac{x+2}{x-2}$.
(1)在下列坐标系中作出函数f(x)的大致图象;
(2)将函数f(x)的图象向下平移一个单位得到函数g(x)的图象,点A是函数g(x)图象的上一点,B(4,-2),求|AB|的最小值.

分析 (1)因为$f(x)=\frac{x+2}{x-2}=1+\frac{4}{x-2}$,故把函数y=$\frac{4}{x-2}$的图象向上平移1个单位,可得函数$f(x)=\frac{x+2}{x-2}$的图象,如图所示.
(2)计算|AB|2=${[{({{x_0}-2})-({\frac{4}{{{x_0}-2}}})}]^2}-4[{({{x_0}-2})-({\frac{4}{{{x_0}-2}}})}]+16$,令$({{x_0}-2})-({\frac{4}{{{x_0}-2}}})=t$,可得|AB|2=t2-4t+16,利用二次函数的性质求得它的最小值.

解答 解:(1)因为$f(x)=\frac{x+2}{x-2}=1+\frac{4}{x-2}$,故把函数y=$\frac{4}{x-2}$的图象向上平移1个单位,
可得函数$f(x)=\frac{x+2}{x-2}$的图象,故函数$f(x)=\frac{x+2}{x-2}$的大致图象如图所示:

(2)依题意,函数$g(x)=\frac{4}{x-2}$,设$A({{x_0},\frac{4}{{{x_0}-2}}})$,因为B(4,-2),
故${|{AB}|^2}={({{x_0}-4})^2}+{({\frac{4}{{{x_0}-2}}+2})^2}={({{x_0}-2})^2}-4({{x_0}-2})+4+{({\frac{4}{{{x_0}-2}}})^2}+\frac{16}{{{x_0}-2}}+4$=${[{({{x_0}-2})-({\frac{4}{{{x_0}-2}}})}]^2}-4[{({{x_0}-2})-({\frac{4}{{{x_0}-2}}})}]+16$,
令$({{x_0}-2})-({\frac{4}{{{x_0}-2}}})=t$,故|AB|2=t2-4t+16=(t-2)2+12≥12,当且仅当t=2时,
此时方程$({{x_0}-2})-({\frac{4}{{{x_0}-2}}})=2$有解,|AB|2取得最小值为12,故|AB|的最小值为$2\sqrt{3}$.

点评 本题主要考查函数的图象,二次函数的性质,求函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.假设学生在高中时数学成绩和物理成绩是线性相关的,若5个学生在高一下学期某次考试中数学成绩x和物理成绩y(总分100分)如下:
学生ABCDE
数学8075706560
物理7066686462
(1)试求这次高一数学成绩和物理成绩间的线性回归方程.
(2)若小红这次考试的数学成绩是52分,你估计她的物理成绩是多少分呢?供参考的数据:80×70+75×66+70×68+65×64+60×62=23190;802+752+702+652+602=24750.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求y=$\frac{\frac{1}{2}{e}^{x}-1}{{e}^{x}+1}$(x>-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A,B,C所对边分别为a,b,c,且c=4$\sqrt{2}$,B=$\frac{π}{4}$,面积S=2,则b等于(  )
A.$\frac{\sqrt{113}}{2}$B.5C.$\sqrt{41}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设a,b,c为△ABC中∠A,∠B,∠C的对边.
求证:a,b,c成等差数列的充要条件是:$a{cos^2}\frac{C}{2}+c{cos^2}\frac{A}{2}=\frac{3}{2}b$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两焦点为F1、F2,斜率为K的直线过右焦点F2,与椭圆交于A、B,与Y轴交于C,B为CF2的中点,若|k|≤$\frac{2\sqrt{5}}{5}$,则椭圆离心率e的取值范围是[$\frac{2\sqrt{5}}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(  )
A.$({2\sqrt{2}+2})π+96$B.$({2\sqrt{2}+1})π+96$C.$({\sqrt{2}+2})π+96$D.$({\sqrt{2}+1})π+96$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)满足:f(x)=f($\frac{1}{x}$)•1gx+1,则函数f(x)=$\frac{lgx+1}{l{g}^{2}x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知随机变量X~N(2,σ2),若P(X<a)=0.3,则P(a≤X<4-a)=0.4.

查看答案和解析>>

同步练习册答案