精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知数列的前项和为满足:(为常数,且)
(1)若,求数列的通项公式
(2)设,若数列为等比数列,求的值.
(3)在满足条件(2)的情形下,设,数列项和为,求证

(1);(2).(3)证明:由(2)知,所以, 由
所以,从而

解析试题分析:(1)当时,
 时,
 时,

两式相减得到,()得到

(2)由(Ⅰ)知,,若为等比数列,
则有
,解得, 再将代入得成立, 所以
(3)证明:由(2)知,所以


所以,     
从而


考点:本题考查了数列的通项公式及前n项和的求法
点评:解决数列的前n项和的方法一般有:公式法、倒序相加法、错位相减法、分组求和法、裂项法等,要求学生掌握几种常见的裂项比如

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{}满足=1,=,(1)计算的值;(2)归纳推测,并用数学归纳法证明你的推测.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,,且.
(Ⅰ) 求,猜想的表达式,并加以证明;
(Ⅱ) 设,求证:对任意的自然数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足:
(1)求证:
(2)若,对任意的正整数恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
已知有穷数列共有项(整数),首项,设该数列的前项和为,且其中常数⑴求的通项公式;⑵若,数列满足
求证:
⑶若⑵中数列满足不等式:,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,点在函数的图象上,其中
(1)证明数列是等比数列;
(2)设,求及数列的通项;
(3)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为Sn=2n2为等比数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列满足:,其中为实数,为正整数.
(1)对任意实数,证明数列不是等比数列;
(2)试判断数列是否为等比数列,并证明你的结论;
(3)设,为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案