分析 对n分类讨论,分组求和即可得出.
解答 解:∵an=(-1)n•(3n-2),
∴n=2k(k∈N*)时,T2k=(-1+4)+(-7+10)+…+[-3(2k-1)+2+3×2k-2]
=3k=$\frac{3n}{2}$.
n=2k-1(k∈N*)时,T2k-1=-1+(4-7)+(10-13)+…+[3(2k-3)-2-3×(2k-1)+2]
=-1-3×(k-1)=-3k+2=$\frac{1-3n}{2}$.
∴数列{an}的前n项和Tn=$\left\{\begin{array}{l}{\frac{3n}{2},n=2k}\\{\frac{1-3n}{2},n=2k-1}\end{array}\right.$,k∈N*.
点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式、分组求和方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{2}$,$\frac{3π}{2}$) | B. | ($\frac{π}{4}$,$\frac{3π}{4}$) | C. | (-$\frac{π}{2}$,$\frac{π}{2}$) | D. | (-$\frac{π}{4}$,$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | [0,2) | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com