精英家教网 > 高中数学 > 题目详情
1.各项均为正数的数列{an}的前n项和为Sn,已知点(an,an+1)(n∈N*)在函数y=3x的图象上,且S3=26.
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为d的等差数列,求数列|$\frac{1}{{d}_{n}}$|的前n项和Tn,并求使$\frac{8}{5}$Tn+$\frac{n}{5×{3}^{n-1}}$≤$\frac{40}{27}$成立的最大正整数n.

分析 (1)先利点(an,an+1)(n∈N*)在函数y=3x的图象上,且S3=26,求出q=3,a1=2,即可求数列{an}的通项;
(2)先把所求结论代入求出数列{Tn}的通项,再利用数列求和的错位相减法即可求出其各项的和,最后利用不等关系求解即可.

解答 解:(1)∵点(an,an+1)(n∈N*)在函数y=3x的图象上,
∴an+1=3an,∴公比q=3,
∴S3=26,∴a1+3a1+9a1=26,解得a1=2,
∴数列{an}的通项公式an=2×3n-1
(2)由(1)知an=2×3n-1,an+1=2×3n
∵在an于an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,
∴an+1=an+(n+1)dn
∴dn=$\frac{4×{3}^{n-1}}{n+1}$,∴$\frac{1}{{d}_{n}}$=$\frac{n+1}{4×{3}^{n-1}}$,
∴Tn=$\frac{2}{4×{3}^{0}}$+$\frac{3}{4×3}$+…+$\frac{n+1}{4×{3}^{n-1}}$,①
Tn+1=$\frac{2}{4×3}$+$\frac{3}{4×{3}^{2}}$+…+$\frac{n+1}{4×{3}^{n}}$②
①-②,整理得Tn=$\frac{15}{16}$-$\frac{2n+5}{16×{3}^{n-1}}$.
∴$\frac{8}{5}$Tn+$\frac{n}{5×{3}^{n-1}}$≤$\frac{40}{27}$,即3n-1≤27,解得n≤4,
∴使得$\frac{8}{5}$Tn+$\frac{n}{5×{3}^{n-1}}$≤$\frac{40}{27}$成立的正整数n的最大值是4.

点评 本题考查数列的通项,考查数列求和的错位相减法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,E为CB1与BC1的交点.
(1)求证:DE∥平面ACC1A1
(2)求直线BC1与平面DB1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cosα-sinα=$\sqrt{2}$,α∈(-π,0),则tanα=(  )
A.-1B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知AB是⊙O的直径,点C是⊙O上的动点(异于A、B),过动点C的直线VC垂直于⊙O所在的平面,D、E分别是VA、VC的中点.
(1)求证:平面EDO⊥平面VBC;
(2)若VC=AB=2BC,求二平角C-VA-B的平面角大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知圆C的圆心在直线l:y=2x-4上,半径为1,点A(0,3).
(Ⅰ)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(Ⅱ)若圆C上存在点M,使|MA|=2|MO|(O为坐标原点),求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知点A(-2,0),点P是⊙B:(x-2)2+y2=36上任意一点,线段AP的垂直平分线交BP于点Q,点Q的轨迹记为曲线C.
(1)求曲线C的方程;
(2)已知⊙O:x2+y2=r2(r>0)的切线l总与曲线C有两个交点M、N,当∠MON>90°,求r2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=$\frac{π}{3}$,M为BC上一点,且BM=$\frac{1}{2}$,MP⊥AP.
(1)求PO的长;
(2)求二面角A-PM-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱柱P-ABCD中,底面是边长为2的正方形,侧棱PA⊥底面ABCD,PA=2,M,N分别为AD,BC的中点.
(1)求证:平面PMN⊥平面PAD
(2)求PM与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P,Q为△ABC中不同的两点,若3$\overrightarrow{PA}$+2$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,3$\overrightarrow{QA}+4\overrightarrow{QB}+5\overrightarrow{QC}=\overrightarrow{0}$,则S△PAB:S△QAB为(  )
A.1:2B.2:5C.5:2D.2:1

查看答案和解析>>

同步练习册答案