精英家教网 > 高中数学 > 题目详情
19.根据如下样本数据
x681012
y2356
得到的线性回归方程为$\hat y=0.7x+\hat a$,则$\hat a$的值为(  )
A.-2B.-2.2C.-2.3D.-2.6

分析 由已知表格中的数据,我们根据平均数公式计算出变量x,y的平均数,根据回归直线一定经过样本数据中心点,可求出a值.

解答 解:由表中数据可得:$\overline{x}$=$\frac{6+8+10+12}{4}$=9,$\overline{y}$=$\frac{2+3+5+6}{4}$=4,
∵回归直线一定经过样本数据中心点,
故a=4-0.7×9=-2.3.
故选:C.

点评 本题考查的知识点是线性回归方程,其中根据回归直线一定经过样本数据中心点,是解答的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列比较大小正确的是(  )
A.sin(-$\frac{π}{18}$)$<sin(-\frac{π}{10})$B.sin(-$\frac{π}{18}$)$>sin\frac{π}{10}$C.sin(-$\frac{π}{18}$)$>sin(-\frac{π}{10})$D.sin$\frac{π}{18}$$>sin\frac{π}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2-(b-1)x+1,其中a∈(-2,0),b∈R.
(1)当a=-1时,解不等式f(x)+f(-x)+3x>0;
(2)若函数f(x)在区间(-2,-1)内恰有一个零点,求a-b的取值范围;
(3)设b>1,当函数f(x)的定义域为[$\frac{1}{a},-\frac{1}{a}$]时,值域为[$\frac{3}{2a}$,-3a],求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知椭圆C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}+\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>b1>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点(1,$\frac{\sqrt{2}}{2}$);椭圆C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}+\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>b2>0)的长轴长度与椭圆C1的短轴长度相等,且一个焦点的坐标为($\frac{\sqrt{3}}{3}$,0)
(1)求椭圆C1,C2的方程;
(2)若斜率为k的直线OM交椭圆C2于点M,垂直于OM的直线ON交椭圆C1于点N,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1在第一、四象限交于A,B两点,若椭圆的左焦点为F,当△AFB的周长最大时,求双曲线的离心率(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知F1、F2是双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点,过F2作垂直于x轴的直线交双曲线于点P,若∠PF1F2=$\frac{π}{6}$,则双曲线的渐近线方程为$y=±\sqrt{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线$\frac{y^2}{12}-\frac{x^2}{4}=1$的渐近线方程为$\sqrt{3}$x±y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,小圆圈表示网络的结点,结点之间的连线表示他们有网线相连,则单位时间内传递的最大信息量为(  )
A.26B.24C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax2-1的图象在点A(1,f(1))处的切线l与直线8x-y+2=0平行,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2012的值为$\frac{2012}{4025}$.

查看答案和解析>>

同步练习册答案