精英家教网 > 高中数学 > 题目详情
“x=3”是“x2=9”的
 
条件.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:x=3⇒x2=9,反之不成立,例如x=-3.即可判断出.
解答: 解:x=3⇒x2=9,反之不成立,例如x=-3.
因此:“x=3”是“x2=9”的充分不必要条件.
故答案为:充分不必要.
点评:本题考查了充要条件的判定方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中正确的是(  )
A、命题“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0”
B、命题“若cosx=cosy,则x=y”的逆否命题是真命题:
C、命题”若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”
D、命题“存在四边相等的四边形不是正方形”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2
ax+b
(a,b为常数),且方程f(x)-x+12=0有两个实数根3和4.
(1)求f(x)的解析式;
(2)若f(x)=-2m的两根为x1,x2,求x12+x22的取值范围;
(3)解不等式f(x)≥
1
2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2a-2<x<a},B={x|
3
x-1
≥1},且A⊆∁RB,
(1)求集合∁RB;      
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(θ)=
sinθ-1
cosθ-2
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C:y=cosx+lnx+2在x=
π
2
处的切线斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a+bx
x
,g(x)=ax.
(Ⅰ)当a=b=1时,利用函数单调性的定义证明f(x)在区间(0,+∞)上是单调减函数;
(Ⅱ)若函数f(x)+g(x)在区间(1,+∞)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴异于原点的交点M处的切线为l1,g(x-1)与x轴的交点N处的切线为l2,并且l1与l2平行.
(1)求f(2)的值;
(2)已知实数t≥
1
2
,求u=xlnx,x∈[1,e]的取值范围及函数y=f(u+t)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的表面积为4π,则其半径为
 

查看答案和解析>>

同步练习册答案