精英家教网 > 高中数学 > 题目详情
8.已知执行如图所示的程序框图,输出的S=485,则判断框内的条件是(  )
A.k<5?B.k≤5?C.k>7?D.k≤6?

分析 模拟执行程序框图,依次写出每次循环得到的s,k的值,当s=484,k=6时由题意,应该不满足条件,退出循环,输出s的值为484,故判断框内的条件是k≤5?

解答 解:模拟执行程序框图,可得
k=1,s=1
满足条件,s=5,k=2
满足条件,s=17,k=3
满足条件,s=53,k=4
满足条件,s=161,k=5
满足条件,s=485,k=6
由题意,此时应该不满足条件,退出循环,输出s的值为485,
故判断框内的条件是k≤5?
故选:B.

点评 本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知A(-2,0),B(0,2),P是圆C:x2+y2+kx-2y=0上的动点,点M.N在圆上,且与直线x-y-1=0对称
(1)求圆心C的坐标及半径;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=asinx+bcosx(a,b为常数,a≠0)在x=$\frac{π}{4}$处取得最小值,则函数$g(x)=f({\frac{3π}{4}-x})$是(  )
A.偶函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点$({\frac{3π}{2},0})$对称
C.奇函数且它的图象关于点$({\frac{3π}{2},0})$对称
D.奇函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某人在5场投篮比赛中得分的茎叶图如图所示,若5场比赛的平均得分为11分,则则5场比赛得分的方差为$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若(x2-x-2)3=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,求a1+a3+a5的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某公司从四名大学毕业生甲、乙、丙、丁中录用两人,若这四人被录用的机会均等,则甲与乙中至少有一人被录用的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某地拟建一座长为640米的大桥AB,假设桥墩等距离分布,经设计部门测算,两端桥墩A、B造价总共为100万元,当相邻两个桥墩的距离为x米时(其中64<x<100),中间每个桥墩的平均造价为$\frac{80}{3}\sqrt{x}$万元,桥面每1米长的平均造价为(2+$\frac{x\sqrt{x}}{640}$)万元.
(1)试将桥的总造价表示为x的函数f(x);
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩A、B除外)应建多少个桥墩?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足有不等式组$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的2倍,则实数a的值是(  )
A.2B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x}{lnx}$+ax,x>1.
(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)若a=2,求函数f(x)的极小值;
(Ⅲ)若存在实数a使f(x)在区间(${e^{\frac{1}{n}}},{e^n}$)(n∈N*,且n>1)上有两个不同的极值点,求n的最小值.

查看答案和解析>>

同步练习册答案