精英家教网 > 高中数学 > 题目详情
4.已知正方体ABCD-A1B1C1D1的棱长为1,S是A1C1的中点,M是SD上的点,且SD⊥MC.
(1)求证:SD⊥面MAC
(2)求平面SAB与平面SCD夹角的余弦值.

分析 (1)连BD,设AC交于BD于O,以O为坐标原点,$\overrightarrow{OB},\overrightarrow{OC},\overrightarrow{SO}$所在的直线分别为x轴,y轴,z轴,建立坐标系O-xyz,求出向量证明$\overrightarrow{SD}•\overrightarrow{AC}=0$,推出AC⊥SD,结合SD⊥MC,证明SD⊥面MAC.
(2)求出平面SAB的法向量,平面SCD的法向量,利用向量的数量积求解两个法向量的夹角余弦值,得到平面SAB与平面SCD夹角的余弦值.

解答 (本小题满分12分)
解:(1)证明:由题意可知,SA=SB=SC=SD,连BD,设AC交于BD于O,由题意知SO⊥平面ABCD.以O为坐标原点,$\overrightarrow{OB},\overrightarrow{OC},\overrightarrow{SO}$所在的直线分别为x轴,y轴,z轴,建立坐标系O-xyz如图,

则高SO=1,于是S(0,0,1),D($-\frac{{\sqrt{2}}}{2}$,0,0),A(0,$-\frac{{\sqrt{2}}}{2}$,0),C(0,$\frac{{\sqrt{2}}}{2}$,0),所以$\overrightarrow{SD}=({-\frac{{\sqrt{2}}}{2},0,-1})$,$\overrightarrow{AC}=({0,\sqrt{2},0})$,所以$\overrightarrow{SD}•\overrightarrow{AC}=0$,即AC⊥SD,又因为SD⊥MC,所以SD⊥面MAC…(5分)
(2)根据题意可知,$B=({\frac{{\sqrt{2}}}{2},0,0})$,$\overrightarrow{SD}=({-\frac{{\sqrt{2}}}{2},0,-1})$,$\overrightarrow{SA}=({0,-\frac{{\sqrt{2}}}{2},-1})$,$\overrightarrow{SC}=({0,\frac{{\sqrt{2}}}{2},-1})$,则$\overrightarrow{SB}=({\frac{{\sqrt{2}}}{2},0,-1})$,
设平面SAB的法向量为$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
则$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{SB}=0\\ \overrightarrow{n_1}•\overrightarrow{SA}=0\end{array}\right.$,所以$\left\{\begin{array}{l}\frac{{\sqrt{2}}}{2}{x_1}-{z_1}=0\\-\frac{{\sqrt{2}}}{2}{y_1}-{z_1}=0\end{array}\right.$,所以解得$\frac{{\sqrt{2}}}{2}{x_1}=-\frac{{\sqrt{2}}}{2}{y_1}={z_1}$,
令$\frac{{\sqrt{2}}}{2}{x_1}=-\frac{{\sqrt{2}}}{2}{y_1}={z_1}=1$,解得${x_1}=\sqrt{2},{y_1}=-\sqrt{2}$,
所以法向量$\overrightarrow{n_1}=(\sqrt{2},-\sqrt{2},1)$,…(7分)
设平面SCD的法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
则$\left\{\begin{array}{l}\overrightarrow{n_2}•\overrightarrow{SD}=0\\ \overrightarrow{n_2}•\overrightarrow{SC}=0\end{array}\right.$,所以$\left\{\begin{array}{l}-\frac{{\sqrt{2}}}{2}{x_2}-{z_2}=0\\ \frac{{\sqrt{2}}}{2}{y_2}-{z_2}=0\end{array}\right.$,所以解得$-\frac{{\sqrt{2}}}{2}{x_2}=\frac{{\sqrt{2}}}{2}{y_2}={z_2}$,
令$-\frac{{\sqrt{2}}}{2}{x_2}=\frac{{\sqrt{2}}}{2}{y_2}={z_2}=1$,解得${x_2}=-\sqrt{2},{y_2}=\sqrt{2}$,
所以法向量$\overrightarrow{n_2}=(-\sqrt{2},\sqrt{2},1)$,…(9分)
所以$\overrightarrow{n_1}•\overrightarrow{n_2}=-3$,$|{\overrightarrow{n_1}}|=|{\overrightarrow{n_2}}|=\sqrt{5}$,所以两个法向量的夹角余弦值为$cos\left?{\overrightarrow{n_1},\overrightarrow{n_2}}\right>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}|•|{\overrightarrow{n_2}}|}}=-\frac{3}{5}$…(11分)
所以平面SAB与平面SCD夹角的余弦值为$\frac{3}{5}$…(12分)

点评 本题考查空间向量的数量积的应用,直线与平面垂直的判断,二面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若正△ABC的边长为a,则△ABC的平面直观图△A′B′C′的面积为=$\frac{\sqrt{6}}{16}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3$+\frac{3}{2}$(1-a)x2-3ax+1,a>0.
(1)试讨论f(x)(x≥0)的单调性;
(2)证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f(x)≤1;
(3)设(1)中的p的最大值为g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.集合L={l|l与直线y=x相交,且以交点的横坐标为斜率}.若直线l′∈L,点P(-1,2)到直线l′的最短距离为r,则以点P为圆心,r为半径的圆的标准方程为(x+1)2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.共享单车是指企业与政府合作,在公共服务区等地方提供自行车单车共享服务.现从6辆黄色共享单车和4辆蓝色共享单车中任取4辆进行检查,则至少有两个蓝色共享单车的取法种数是115.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从1,2,3,4这四个数中一次随机地选两个数,则选中的两个数中至少有一个是偶数的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{m}$=(1,1),向量$\overrightarrow{n}$与向量$\overrightarrow{m}$的夹角为$\frac{3π}{4}$,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求向量$\overrightarrow{n}$;
(2)设向量$\overrightarrow{a}$=(1,0),向量$\overrightarrow{b}$=(cosx,2cos2($\frac{π}{3}-\frac{x}{2}$)),其中0<x<$\frac{2π}{3}$,若$\overrightarrow{n}$•$\overrightarrow{a}$=0,试求|$\overrightarrow{n}$+$\overrightarrow{b}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-$\frac{1}{4}$,点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M、N两点,求线段MN长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知如图所示的多面体EF-ABCD中,四边形ABCD是菱形,四边形BDEF是矩形,ED⊥平面ABCD,∠BAD=$\frac{π}{3}$.若BF=BD=2,则多面体的体积$\frac{8}{3}\sqrt{3}$.

查看答案和解析>>

同步练习册答案